SCA Lighting Upgrade Options Assessment

Public Report

JANUARY 19, 2023 Public Report

The New York City
School Construction Authority
Long Island City, NY
Report Prepared by
OLA Consulting Engineers, PC

Table of Contents

1 EXECUTIVE SUMMARY 3
2 BUILDING CONDITIONS/EXISTING CONDITIONS 4
2.1 Existing Building Conditions 4
2.2 Existing Lighting Configurations 4
2.3 SCA Lighting Design Specifications 9
3 LIGHTING UPGRADE OPTIONS / RECOMMENDATIONS 12
3.1 Retrofit Lighting Fixture Option 12
3.2 New Lighting Fixture Options 14
3.3 Lighting Controls Options 17
4 COST ASSESSMENT 21
4.1 Lighting Retrofit and New Fixture Material and Labor Costing 21
4.2 Lighting Controls Costing 21
4.3 Total Lighting Costing 22
5 ENERGY ASSESSMENT 23
5.1 Energy and Cost Savings 23
6 APPENDIX 26
Appendix A - Original Lighting Design Drawing Floor PlansAppendix B - OLA Existing Lighting Fixture CountsAppendix C - SCA Lighting Design Standards/RequirementsAppendix D - Retrofit Lighting Fixture Designs and Light Level CalcsAppendix E - New Lighting Fixture Designs and Light Level CalcsAppendix F - Proposed Retrofit and New Lighting FixturesAppendix G - Proposed Lighting Control Network and CutsheetsAppendix H - Typical Wireless Lighting Control Design Plans

1 Executive Summary

OLA Consulting Engineers (OLA) was requested by the New York City School Construction Authority (NYC SCA) to investigate the existing lighting at an example public school in Queens, NY (referred to as School A) and a public school in Bronx, NY (referred to as School B). School A, which is 120,000 square feet, and School B, which is 35,000 square feet, are schools for students from grade Pre-K through 8th grade. OLA investigated the existing lighting configuration throughout the schools to determine the potential cost and energy savings available from both retrofit and new fixture upgrades as well as lighting controls upgrades.

The objective of this lighting assessment is to provide potential options for LED lighting upgrades through retrofit replacements and through new fixture replacements rather than through a full lighting redesign. SCA is interested in analyzing the savings from both a lighting retrofit and a new fixture lighting upgrade to determine the optimal approach for these and potentially other schools.

In comparing the retrofit versus new fixture options for the two schools, it was found that even though the material cost for the retrofit lighting replacement option was less than the new fixtures, that this difference was not great enough to offset the increased estimated labor cost associated with retrofit replacement kits as compared to installing new fixtures. The new fixture replacement option also provides additional energy and carbon savings over the retrofit upgrade option. Both options were found to produce lighting levels well above those required by SCA design standards, resulting in overlit spaces, even at the lowest wattage LED retrofit and new fixture replacement options available. The new fixture replacement path can also potentially provide further energy savings and lighting level reductions by reducing the number of fixtures in the classroom lay-in ceilings, providing lighting levels in the classrooms that more closely meet SCA design standard requirements. It is therefore recommended that new lighting fixture replacements be considered over that of retrofit lighting replacements for existing schools such as School A and School B.

2 Building Conditions/Existing Conditions

2.1 Existing Building Conditions

School A is located in Queens, New York. The total building area is approximately 120,000 sq. ft. and consists of 3 floors plus a cellar floor and a mechanical penthouse. The original lighting systems throughout the building were installed in 2002. The lighting design floor plan drawings for School A are included in Appendix A. The count and type of existing fixtures installed in each room throughout School A were surveyed and tabulated. This tabular information with the existing fixtures in School A is included in Appendix B.

School B is located in Bronx, New York. The total building area is approximately $35,000 \mathrm{sq}$. ft . and consists of 3 floors plus a cellar floor and a mechanical penthouse. The original lighting systems throughout the building were installed in 1997. The lighting design floor plan drawings for School B are included in Appendix A. The count and type of existing fixtures installed in each room throughout School B were surveyed and tabulated. This tabular information with the existing fixtures in School B is included in Appendix B.

2.2 Existing Lighting Configurations

2.2.1 Classroom and Hallways Lighting

Each classroom throughout School A has a similar lighting fixture configuration. The fixtures in the classrooms typically consist of $2^{\prime} \times 4^{\prime}$ fixtures with 3 (32 W) T8 fluorescent bulbs as well as $2^{\prime} \times 2^{\prime}$ fixtures with $2(28 \mathrm{~W})$ T8 U6 fluorescent bulbs. Each classroom contains a range of 9 to 18 lighting fixtures, depending on the size of the classroom, with the most typical number of fixtures per classroom being 12 (3×4 arrangement). Figures 1 and 2 show the original/existing lighting design floor plans for typical classrooms. These fixtures are controlled by 2 light switches that split the classroom zones into a perimeter zone and an interior zone. The average lighting power density (LPD) in the School A's classrooms is $1.31 \mathrm{~W} / \mathrm{ft}^{2}$. A typical classroom lighting fixture layout is shown in Photo 1. A lighting level of about 56 footcandles (FC) was recorded in the classroom shown in Photo 1.

Figure 1: School A Original Lighting Design Floor Plan for 101 Kindergarten

Figure 2: School A Original Lighting Design Floor Plan for 102 Pre-Kindergarten

As shown in Photo 2 below, the hallways at School A consist of 2'x 4' fixtures with 3 (32 W) T8 lamps, which are similar throughout each floor of the building. The average LPD in the School A hallways is about $0.92 \mathrm{~W} / \mathrm{ft}^{2}$. The hallways at School A were measured to have a lighting level of about 55 FC.

Photo 1. School A Typical classroom lighting layout

Photo 2. School A Hallway lighting layout

Each classroom throughout School B has a similar lighting fixture configuration. The fixtures in the classrooms typically consist of $2^{\prime} x 4^{\prime}$ fixtures with 3 (32 W) T8 fluorescent bulbs and/or 2'x2' fixtures with 2 (31 W) T8 U6 fluorescent bulbs. Each classroom contains a range of 6 to 15 lighting fixtures, depending on the size of the classroom, with the most typical number of fixtures per classroom being 12 fixtures per classroom (4×3 arrangement). These fixtures are controlled by 2 light switches that split the classroom zones into a perimeter zone and an interior zone. The average LPD in the School B's classrooms is about $1.43 \mathrm{~W} / \mathrm{ft}^{2}$. A typical classroom fixture layout is shown in Photo 3. Classroom 308 in School B was measured to have a lighting level of about 89 FC.

Photo 3. School B $3011^{\text {st }}$ and $2^{\text {nd }}$ Grade Classroom lighting layout

The Classroom hallways at School B contain 2'x2' recessed fixtures with 2 (31W) T8 U fluorescent bulbs, with similar fixtures throughout each floor of the building. These fixtures are controlled by the electrical panel in the hallway of the $1^{\text {st }}$ floor. The average LPD of the School B's hallways is about $0.82 \mathrm{~W} / \mathrm{ft}^{2}$. A light level of about 55 FC was recorded in the hallways at School B.

2.2.2 Cafeteria, Kitchen, and Gym Lighting

The Cafeteria and Kitchen at School A, located on the 1st floor, are about 6,100 ft^{2} total. The Cafeteria lighting consists of two different fixture types including $2^{\prime} \times 4^{\prime}$ fixtures with 3 (32 W) T8 fluorescent bulbs and $2^{\prime} \times 2^{\prime}$ fixtures with 2 (28 W) T8 U6 fluorescent bulbs. The LPD for the Cafeteria is about $1.51 \mathrm{~W} / \mathrm{ft}^{2}$ and the Kitchen is about $1.47 \mathrm{~W} / \mathrm{ft}^{2}$. A light level of about 47 FC was recorded in the Cafeteria. A light level of about 54 FC was recorded in the Kitchen. The lighting fixture layout for the Cafeteria is shown in Photo 4. Figure 3 shows the original lighting design plans for the Cafeteria.

The Gym at School A, located on the $1^{\text {st }}$ floor, is about 7,700 ft^{2} total. The lighting in the Gym consists of 2'x4' (surface mounted) fixtures with 2 (32 W) T8 fluorescent bulbs and (400 W) PR-Lamp fluorescent pendants. These fixtures are mounted and hung about 30^{\prime} AFF. The LPD in the Gym is about $1.1 \mathrm{~W} / \mathrm{ft}^{2}$. A light level of 55 FC was recorded in the Gym. The lighting fixture layout for the Gym is shown in Photo 5 below. Figure 4 indicates the original/existing lighting design plans for the Gym in School A.

Photo 4 School A Cafeteria Lighting Fixture Layout

Photo 5. School A Gym Lighting Fixture Layout

Figure 3. School A Original Lighting Design Floor plan for Cafeteria

Figure 4. School A Original Lighting Design Floor Plan for Gym
The Student Dining/Multipurpose and Kitchen at School B, located on the 1st floor, are about $3,800 \mathrm{ft}^{2}$ total. The Student Dining/Multipurpose space consists of 2'x4' 3 (32 W) T8 fixtures, also installed in the Classrooms. The LPD in the Student Dining/Multipurpose is $1.29 \mathrm{~W} / \mathrm{ft}^{2}$. Photo 6 below shows the existing Student Dining/Multipurpose lighting
configuration. A light level of about 47 FC was recorded in this space. The LPD for the Kitchen area is $1.14 \mathrm{~W} / \mathrm{ft}^{2}$. Photo 7 below shows the Kitchen lighting configuration.

Photo 6. School B Student Dining/Multipurpose Lighting Configuration

Photo 7. School B Kitchen Lighting Configuration

2.2.3 Mechanical Room / Back of House Lighting

The back-of-house lighting in the stairs, mechanical rooms, and basement level at School A consists of $2^{\prime} \times 4^{\prime}$ pendant fixtures with $3(32 \mathrm{~W})$ T8 fluorescent bulbs. According to the building engineer, these lighting fixtures are switched on typically for 4 hours per day. These fixtures are all connected to the same power switch.

The stairs and basement level corridors at School B contain 1'x4' pendant fixtures with 2 (32W) T8 fluorescent bulbs, as shown in Photo 8. According to the building engineer, the fixtures in the hallways are tied into the main lighting panel and remain on for majority of the day. The lighting within the mechanical and back of house areas are controlled by local switches.

Photo 8. School B Hallway lighting layout

2.2.4 Existing Building Lighting Controls System

At School A, the corridor lighting is controlled based on a manual wall mounted light switch in the building operator's room. The building operator noted that this switch turns on the corridor lighting from 5am to 7pm on weekdays.

At School B, there are minimal lighting controls. As seen in Photo 9, various wall mounted vacancy sensors were observed to be installed within some Classrooms \& Offices. It was noted by the building operator that some of these sensors were not functional. A ceiling mounted vacancy sensor was also found to be installed in 309 Staff Lounge, as shown in Photo 10. It is unknown if this sensor is functional. The hallway and stair lighting for each floor are controlled by a manual switch connected to the main circuit panel located in the first-floor corridor. The building operator noted that this switch turns on the main hallway and stair lighting from 5 am to 7 pm on weekdays.

Photo 9. Wall Mounted Vacancy sensor in School B

Photo 10. Ceiling Mounted Vacancy sensor in School B

2.3 SCA Lighting Design Specifications

2.3.1 General Requirements

SCA has provided a set of design standards that must be met for all new construction, major modernization and capital improvement projects. The general lighting requirements/standards are outlined in SCA Design Requirements (Electrical and Communication Services) Section 7.2 Lighting Systems, which is included in Appendix C. Each bulb lamp, ballast, driver or fixture must be UL approved.

The SCA Design Requirements (Electrical and Communication Services) Section 7.2.1C notes that typical new classroom lighting shall consist of two (2) rows of direct/indirect, ceiling pendant-mounted luminaires spaced approximately 12' on center to produce optimum lighting. The lighting fixture arrangements in School A and School B do not match these requirements, with the existing layouts contributing to light levels being above current SCA requirements, even when replacing the currently installed fluorescent lighting fixtures with new high efficiency LED fixtures at the lowest available wattage.

New fixture type requirements in SCA Design Requirements (Electrical and Communication Services) Section 7.2.1C vary by space type. New classrooms and libraries require direct/indirect ceiling pendant luminaires, new offices and cafeterias require recessed $2^{\prime} \times 4^{\prime}$ luminaires, new corridors require recessed $2^{\prime} \times 4^{\prime}$ or $2^{\prime} \times 2^{\prime}$ luminaires (based on ceiling grid selected) and new gymnasiums require high bay, non-glare luminaires with impact resistance lens.

2.3.2 Light Intensity

The SCA Design Requirements (Electrical and Communication Services) Section 7.2.1B also provide requirements regarding illumination levels or light intensity. Table 1 below indicates the SCA requirements for the illumination level and the maximum total average light power density (LPD) for typical functional spaces within the schools, from this document. Compliance with IES minimum recommended illumination levels and the 2020 NYCECC watts per square foot limitations are followed with these requirements.

Table 1. SCA Lighting Design Requirements		
Space type	FC Level	Max LPD (w/ft $\left.{ }^{\mathbf{2}}\right)$
Auditorium	40^{*}	0.63
Boiler Room	30	0.39
Cafeteria / Lunchroom	30^{*}	0.53
Classrooms	35^{*}	0.50
Corridors	20	0.55
Gymnasium	30^{*}	0.75
Kitchen	50	0.92
Library	40	0.77
Lobby	30	0.90
Offices	35	0.50
Restrooms	20	0.75
* Classroom and PA Space foot-candle calculations shall exclude the levels in the area 3 feet around the perimeter of each classroom but shall include lighitng over all teaching surfaces. Average maintainted level at 30" AFF shall be a minimum of 35 FC with an average to minimum ratio not to exceed 2.5.		

SCA notes that the maximum LPD per space is required to be at or below ASHRAE 90.12016 levels, as modified by Appendix CA of the 2020 NYCECC. Total building lighting power density (LPD) using the 2020 NYCECC - ASHRAE 90.1-2016 whole building procedure shall be a maximum of $0.5 \mathrm{~W} / \mathrm{ft}^{2}$ for new primary schools, intermediate schools, high schools as well as Additions, Modernization and new Capital Improvement Projects. As noted previously, maintaining the required average illumination levels with the current lighting fixture arrangements in School A and School B is difficult even when converting to new higher efficency LED lighting, due to the large quantity of fixtures currently installed.

2.3.3 Lighting Control

Requirements for lighting controls are also outlined in Section 7.2.1D of the SCA Design Requirements (Electrical and Communication Services). SCA notes that all interior lighting, except for emergency lighting, shall be automatically controlled by a programmable lighting control panel, provided at an electric closet in the school, with an integral clock. Any lighting that is not controlled by occupancy or vacancy sensors are required to be
controlled by this integral clock. However, retrofit projects do not require this time clock control.

SCA provides a table in the above section of the SCA Design Requirements, which provides guidelines for the individual lighting controls for each space. It is noted that the requirements in this table are similar to requirements provided in the 2020 NYC Energy Conservation Code.

Daylight harvesting is also noted as a requirement in Section 7.2.1D of the SCA Design Requirements (Electrical and Communication Services). The standard notes that every zone with a window shall be provided with daylight harvesting, where required by the 2020 NYC Energy Conservation Code. Typically, the daylight harvesting sensor is installed to control all the lighting in both classrooms and offices to maintain the required foot candle levels.

2.3.4 Lighting Color/ Quality

Regarding lighting color and quality, SCA notes in SCA Design Specification 16502 - LED Interior Building Lighting that Correlated Color Temperature (CCT) range should be between 3000 K and 4000 K and be correlated to chromaticity as defined by the absolute (X, Y) coordinates on the 2-D CIE chromaticity chart. This has been taken into consideration in selecting retrofit options and new lighting fixtures options for both schools in this study.

3 Lighting Upgrade Options / Recommendations

3.1 Retrofit Lighting Fixture Option

Following a review of the drawings and a site survey performed by OLA to investigate the layout/ condition of the existing fixtures at School A and School B, the feasibility of retrofitting or replacing the existing fixtures was assessed together with the help of lighting designer, Illuminations. The retrofit lighting fixture designs were based on the Lithonia brand fixtures (an SCA approved lighting fixture manufacturer) - references noted below are based on this brand's products. A lighting retrofit can have certain benefits over a new fixture replacement. First, the cost of a lighting retrofit kit is typically less and may provide similar performance and efficiency as compared to a new fixture replacement. The implementation of this option can therefore provide similar high energy savings and carbon emissions reduction to that of a new fixture replacement, without a full lighting redesign being required.

As seen in both School A and School B, many existing schools use traditional fluorescent lighting fixtures. There are a few typical methods to convert/retrofit the existing lighting system to LED including Type A, B and C retrofit options. As part of this study, each of these methods for retrofitting existing lighting systems were reviewed to determine which is the most feasible regarding efficiency and sustainability. For this study, Type C replacements were chosen after discussions and reviews with several lighting designers/vendors regarding the existing conditions of School A and School B lighting fixtures, along with SCA design requirements. Type C replacements consist of a direct replacement of the existing fixture with a new fixture configuration that fits within the existing fixture's location. This process requires minimal demolition as well as minimal wiring to integrate. The proposed Type C retrofit fixture replacement also meets the SCA requirement of being a UL listed configuration. It also provides drivers that allow for dimming of these fixtures, which is more in line with SCA current design requirements and can help to achieve SCA required light levels - whether the controls are implemented during the lighting upgrade or at a future time, this Type C retrofit allows for flexibility and "future proofing" to allow these fixtures to provide the required SCA lighting controls in the future.

The other lighting retrofit options considered were a Type A and Type B replacement. Type A involves replacing the existing fluorescent bulb with an LED equivalent. This is the most costeffective solution but has many disadvantages. The existing fixtures found in the schools have not been tested with LED bulbs therefore removing their UL certification, a key SCA requirement. Another issue with Type A is that the ballast within the existing fixtures would have a reduced life span and would require replacement shortly after being installed. Many of the existing fixture lens are also discolored and difficult to reinstall, requiring possible replacement of existing light fixture lenses as well. Type B replacements include replacing the existing fluorescent bulb with an LED equivalent and removing the ballast by modifying the fixture. This replacement method also removes the UL certification and may require lens replacement.

The predominant existing fixtures installed throughout the two schools are the $2^{\prime} \times 2^{\prime}$ and the $2^{\prime} x 4^{\prime}$ rectangular troffer 78 lighting fixtures. The proposed retrofit replacement kit for these two fixture types included Lithonia Lighting model numbers 2BLT4R 30L ADP (2'x4') and 2BLT2R 20L ADP ($2^{\prime} \times 2^{\prime}$). These lighting retrofit kits meet SCA Design Requirement 7.2.1A - Energy Efficient Lighting Luminaires as the fixtures include luminaries that are high efficiency LED and the fixture is UL certified. Cutsheets for the proposed retrofit $2^{\prime} \times 4^{\prime}$ fixtures have been provided in the Appendix F.

In order to verify how the lighting retrofit design would perform when installed, lighting level calculations were performed by the lighting designer for typical spaces within School A and School B. These calculations used the lighting design drawings for the schools along with the proposed lighting retrofits (and associated IES files) to generate light level calculations. A light loss factor of 0.8 was assumed for the retrofit option, which includes loss for the existing lens. The retrofit lighting plans provided by the lighting designer can be found in the Appendix D. Figure 5 below shows the light level readings in a typical Classroom within School A with the proposed retrofit design. Figure 6 below shows the light level readings in the Cafeteria of School B.

The lighting calculations were critical to the study to determine if the proposed retrofit or new fixture selections met SCA's light level requirements. Figure 7 shows the results of the lighting calculations for School A with the lighting retrofit design. As seen in Figure 7, 101 Kindergarten has an average to minimum FC ratio of 1.3 to 1 , which does not exceed the 2.5 to 1 average to minimum ratio requirement listed within the SCA Design Requirements. However, this classroom space has a high average light level of 45.3 FC , which is well above the 35 FC requirement from SCA. Figure 7 also shows 105A General Office with an average light level reading of 31.5 FC, which is close to the 35 FC requirement from SCA. Figure 8 shows the results of the lighting calculations for School B with the retrofit design. As seen in Figure 8, the student Dining / Multipurpose room has an average to minimum FC ratio of 2.0 to 1 , which does not exceed the 2.5 to 1 average to minimum ratio requirement listed within the Design Requirements. However, this space has a high average light level of 41.3 FC, which is well above the 30 FC requirement from SCA.

Figure 5. Foot Candle Readings in School A Classroom with proposed Retrofit Fixtures

Figure 6. Foot Candle Readings in School B Gym/Cafeteria with proposed Retrofit Fixtures

Statistics Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
101 Kindergarten @2.5'AFF	+	45.3 fc	51.0 fc	34.9 fc	1.5:1	1.3:1
105A General Office @2.5'AFF	+	31.5 fc	40.2 fc	17.9 fc	2.2:1	1.8:1
125 CW Spec. Ed @ 2.5 'AFF	+	35.5 fc	44.0 fc	16.4 fc	2.7:1	2.2:1
263 Student Dining @2.5'AFF	+	29.9 fc	39.0 fc	11.9 fc	3.3:1	2.5:1

Figure 7: School A Retrofit Fixture Replacement Lighting Levels

| Statistics
 Description | Symbol | Avg | Max | Min | Max/Min Avg/Min | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Student Dining/Multipurpose Room @2.5'AFF | + | 41.3 fc | 50.1 fc | 20.9 fc | $2.4: 1$ | $2.0: 1$ |

Figure 8: School B Retrofit Fixture Replacement Lighting Levels

3.2 New Lighting Fixture Options

Following a review of the drawings and a site survey performed by OLA to investigate the existing lighting layouts and condition of the existing fixtures at School A and School B, the feasibility of replacing the existing fixtures with new high efficiency LED fixtures was investigated together with the help of a lighting designer, Illuminations. In order to replace each existing fixture, the fixture types, sizes, and quantities through the building were assessed. Based on this existing fixture information and SCA design requirements, new lighting fixtures were proposed. This new lighting fixture design was based on the Lithonia brand fixtures (an SCA approved lighting fixture manufacturer), with references noted below are based on this brand's fixtures. Several benefits of a full lighting fixture replacement (as compared with a retrofit replacement) include long-term longevity for each fixture. Modern new LED fixtures can last from 5-10 years with minimal maintenance required. Another advantage is higher quality factory wiring at the fixtures as compared with field wiring required for retrofit kits. With new LED fixtures not only becoming more efficient, using less energy and producing more illumination, but also reducing material with panel fixture options, the difference in cost of new fixtures compared to retrofit fixtures is reducing.

As previously noted, the main existing fixtures installed throughout the schools are $2^{\prime} \times 2^{\prime}$ and $2^{\prime} \times 4^{\prime}$ rectangular troffer T8 lighting fixtures. The proposed new fixture replacement for these two fixture types included Lithonia Lighting model numbers EPANL 2'x4' 3000LMHE and EPANL 2'x2' 2000LMHE. Cutsheets for the proposed new $2^{\prime} \times 2^{\prime}$ and $2^{\prime} \times 4^{\prime}$ fixtures have been provided in Appendix F. These lighting fixtures meet SCA Design Requirement 7.2.1A - Energy Efficient Lighting Luminaires as the fixtures include luminaries that are high efficiency LED and the fixture is UL certified. These fixtures are also capable of increasing and reducing the lighting output directly at the fixture to meet SCA design requirements without requiring a fixture replacement, which is not the case for the retrofit option.

In order to verify the performance of the new proposed light fixtures installed throughout the schools, lighting calculations were performed by the lighting designer. These calculations used the lighting design drawings for the schools along with the proposed new lighting fixtures (and
associated IES files) to generate light level calculations. A light loss factor of 0.9 was assumed for these new LED fixtures. The calculations were performed in several typical spaces throughout the schools, to compare with SCA lighting requirements. These calculations performed by the lighting designer are indicated in Appendix E. The goal with this lighting design is to meet the SCA light level requirements as well as to reduce the space light power density and energy consumption. Figure 9 shows the library at School A with new fixtures. The average light level within the library was 41.9 FC , the average light level in the reading area was 42.8 FC and the average light level in the stacks was 44.5 FC. These appear to be just above the 40 FC requirement from SCA. Figure 10 shows a typical classroom lighting plan found throughout School B with the new fixtures installed. Figure 12 shows the results of the lighting calculations for School B with the new fixture design. As seen in Figure 12, 301 Classroom has an average to minimum FC ratio of 2.4 to 1, which does not exceed the 2.5 to 1 average to minimum ratio requirement listed within the SCA Design Requirements. However, this classroom has an average foot candle level of 59.4 FC, which far exceeds the 35 FC requirement from SCA.

Figure 9. Calculated light levels in School A Library with New Fixtures

Figure 10. Calculated light levels in School B Classroom 305 with New Fixtures

Statistics						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
113 Gymnasium @Floor	+	44.2 fc	52.4 fc	26.0 fc	2.0:1	1.7:1
211 Library General @2.5'AFF	+	41.9 fc	52.2 fc	23.2 fc	2.3:1	1.8:1

Figure 11. School A New Fixture Replacement Light Levels

Statistics						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
ACD Kitchen 108 @2.5'AFF	+	23.8 fc	44.1 fc	6.9 fc	6.4:1	3.4:1
Classroom 301 @2.5'AFF	+	59.4 fc	95.5 fc	25.0 fc	3.8:1	2.4:1
Classroom 302 @2.5'AFF	+	38.1 fc	47.5 fc	18.8 fc	2.5:1	2.0:1
Classroom 305 @2.5'AFF	+	47.4 fc	63.7 fc	24.2 fc	2.6:1	2.0:1

Figure 12. School B New Fixture Replacement Lighting Levels

One possibility with the new lighting fixture option is that the lighting fixture layout can be altered to reduce the overall number of fixtures per space. With less fixtures, there would be reduced light levels in the spaces and reduced energy and carbon consumption. With the current fixture layouts in School A and School B, most space light levels are well above the SCA design requirements when installing new fixtures with even the lowest output available. Reduction in the total quantity of light fixtures in these spaces may be a feasible option with an existing school lighting upgrade project, to further reduce the light levels to within SCA design standards as well as to further reduce annual energy and carbon consumption. Typical classroom light levels were found to be about 43.5 FC when replacing the current existing light fixtures with the lowest output 2'x4' light fixture. When a row of lights was removed and the light fixtures were relocated within the classroom, the light levels were found to reduce to about 33 FC which is closer to the 35 FC threshold for classrooms indicated in SCA Design Requirements section 7.2.1B - Illumination Levels. It should be noted that there would be increased installation cost when altering the ceiling layout to reduce the number of light fixtures in the classrooms, but reduced material cost from reduced number of fixtures. New lighting floorplans with lighting level comparisons were provided by the lighting designer for a few select classrooms, which are shown in Appendix E . Figures 13 and 14 below show one sample classroom in both School A and School B with a reduced number of fixtures along with the respective foot candle calculations for the spaces. The light levels calculated with reduced new fixtures was found to be 35.8 FC (versus 47.8 FC) for the classroom in School A and 33.5 FC (versus 47.4 FC) for the classroom in School B as shown in Figures 15 and 16.

Figure 13. Calculated Light Levels in School A Classroom 101 with Reduced Number of Fixtures

Figure 14. Calculated Light Levels in School B Classroom 305 with Reduced Number of Fixtures

Statistics						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
101 Kindergarten @2.5'AFF	+	35.8 fc	40.1 fc	28.4 fc	1.4:1	1.3:1

Figure 15. School A Classroom 101 Reduced New Fixture Replacement Lighting Levels

Statistics						
Description	Symbol	Avg	Max	Min	Max/Min	Avg/Min
ACD Kitchen 108 @2.5'AFF	+	23.8 fc	44.1 fc	6.9 fc	6.4:1	3.4:1
Classroom 301 @2.5'AFF	+	34.9 fc	47.4 fc	16.7 fc	2.8:1	2.1:1
Classroom 302 @2.5'AFF	+	32.8 fc	42.8 fc	17.0 fc	2.5:1	1.9:1
Classroom 305 @2.5'AFF	+	33.5 fc	42.6 fc	19.3 fc	2.2:1	1.7:1

Figure 16. School B Reduced New Fixture Replacement Lighting Levels

3.3 Lighting Controls Options

Although lighting fixture upgrade options was the focus of this study, lighting controls retrofit options to meet SCA school requirements was also evaluated as part of this study. The lighting controls upgrade recommendations between the retrofit and new fixture option are identical in scope and cost in this study. The goal of the lighting controls is to increase energy savings by reducing the operation of lighting fixtures (during unoccupied or daylit times) and ensure schools are meeting the SCA design standards regarding lighting control. Initially, there were two proposed options for installing lighting controls - wired and wireless lighting controls. Due to the lighting control equipment and labor cost associated with installation a wired lighting control system, the estimated cost of implementing wired lighting controls with a new or retrofit lighting fixture design was significantly more expensive than implementing a wireless lighting control system. Since this cost was significantly more expensive in an existing school than implementing a wireless lighting control system, further investigation into implementing a wired lighting control system was not pursued. The lighting control network riser diagrams and equipment cutsheets for both wired and wireless lighting control designs have been provided in Appendix G.

With LED lighting fixture upgrade advances, the lighting controls option that was considered is embedded controls within the luminaire. Embedded control within the fixtures not only reduces the field installation process and cost of lighting controls but also ensures that the lighting control is manufactured and tested prior to installation.

3.3.1 Wireless Embedded Lighting Control

As previously mentioned, requirements for lighting control are provided by SCA in Section 7.2.1 of SCA Design Requirements. In working with the lighting designer, Illuminations, on this study, potential options for wireless lighting control were evaluated for all the room types with lighting control requirements as per SCA Design Requirements. The wireless embedded lighting controls design floor plans for typical rooms is shown in Appendix H . These wireless controls were based on the Acuity brand system (an SCA approved lighting controls manufacturer), with references noted below based on this brand's products.

With the wireless embedded lighting control option, the need for CAT 5e cable installation is not required, which may be the most flexible and cost-effective solution available for the existing schools. As indicated in Figure 17 below, provided by the lighting designer, the wiring configuration for the network backbone would require a cable from a PS 150 power source connected to the nLight air controller and the wireless network backbone.

The specific components for the study include an nLight ECLYPSE system controller to support connectivity and management over an IP network and a USB to CAT6 converter/extender and a nLight Air Adaptor, all of which can be seen in Figure 18 below. Beyond these central devices, lighting control components such as relay panels and power packs are also not required as a result of the wireless embedded lighting controls.

Figure 17. Wireless Lighting Control Network Riser

Figure 18. Components of the Wireless Lighting Control System

Each room type would have a different arrangement of lighting control devices for the specific lighting control requirements needed. A typical classroom would require the fixtures to be nLight Air enabled fixtures. The integral controls would include both occupancy sensors as well as daylight sensors for the fixtures in the daylighting zone. The daylight sensor would include a mounting height lens based on the ceiling height in the classrooms for proper daylight harvesting. The wall switch would be a 2 -pole raise/lower dimming switch without wires. Figure 19 below indicates the network connectivity of the classrooms. The quantity of control devices would vary based on the room layout, but typically would include one (1) two pole switch to control nLight Air enabled lighting fixtures, as seen in Figure 20 below. Both the lighting fixture embedded sensors and the switches would be line voltage type rather than battery operated. It was confirmed with the lighting vendor that there is no cost difference between the two options.

Figure 19. Typical Classroom Wireless Lighting Control Network Riser

Figure 20. Typical Classroom wireless lighting control design

A typical office would be very similar to a typical classroom. The offices would also require nLight Air enabled lighting fixtures. The only difference would be that the wall switch would be an nLight preset wall controller with on/off and dimming capabilities. Figure 21 below indicates the rPODBA DX wall controller and Figure 22 indicates the typical office wireless lighting control design layout.

Figure 22. Typical Office wireless lighting control design

Figure 21. rPODA wireless wall controller

Corridors, lobbies and restrooms would all have similar lighting control layouts with the main difference being the lighting control wall switch. For the corridor, lobbies and restrooms, there are emergency light fixtures which would have a separate sequence of operation compared to the non-emergency lighting fixtures. The difference between lobbies/corridors and restrooms is the amount of wall switches due to the size of typical
corridors and lobbies. Two (2) wall switches are proposed on opposite ends of these spaces. The wall switch would be an nLight preset wall controller with on/off capabilities for the lobby, corridor and restroom.

The auditorium has two (2) different types of wall switches, including a wall switch with just on/off capabilities and a wall switch with 4 scene control and raise/lower dimming capabilities. The 4 -scene control light switch, indicated in Figure 23 below, is also the proposed wall switch for the gymnasium and student dining area. Both the gymnasium and auditorium contain emergency light fixtures which would also need a separate lighting control sequence. Indicated in Figure 24 below is the proposed gym lighting control layout.

Figure 23. rPODA 4S wireless wall controller

Figure 24. Typical Gymnasium wireless lighting control design

A typical library, due to the various lighting configurations, would require two (2) 4 scene control and raise/lower dimming capabilities. The library would require both the 2×2 and 2×4 fixtures to be n Light Air enabled fixtures.

Exterior lighting controls would require nLight AIR power/relay packs (one for each exterior lighting circuit) tied into the nLight ECLYPSE system controller, which already has an astronomical time clock built into the controller. Therefore, the backbone for the exterior lighting controls is already built into the wireless lighting controls system for the interior lighting controls and the only additional components needed are the power/relay packs noted.

4 Cost Assessment

4.1 Lighting Retrofit and New Fixture Material and Labor Costing

Costs not available for public version.

4.2 Lighting Controls Costing

For this study, both wired and wireless controls were initially investigated to determine which would be the best option to recommend for an existing building lighting retrofit. It was found, as noted previously, that the wired lighting controls option was significantly more expensive than the wireless option, with no additional energy savings or installation labor savings. Wireless lighting controls scope and costing were therefore evaluated for this study. Table 2 below shows the wireless controls devices required per typical space type which generates the estimated total equipment quantities for the schools. The quantities for these lighting control devices for each space type were provided by the lighting designer. The proposed lighting control design and the associated cutsheets for each equipment type can be found in Appendix G.

Table 2: Wireless Controls Equipment Quantities									
Unit Type	nECYBG	nECYDAIR	nECYDEXT	$\begin{gathered} \mathrm{r} \$ \\ \text { (RPODLA XX G2) } \end{gathered}$	$\begin{array}{\|c\|} \text { r\$2PD } \\ \text { (RPODLA 2P DX } \\ \text { XX G2) } \\ \hline \end{array}$	$\begin{gathered} \text { r\$4SD } \\ \text { (RPODLA 4S } \\ \text { DX XX G2) } \end{gathered}$	$\begin{gathered} \text { r\$D } \\ \text { (RPODLA DX } \\ \text { XX G2) } \\ \hline \end{gathered}$	rPP20	Equipment Quantity (per Space)
Room Type									
Auditorium					1		1		2
Corridor				2					2
Gym						1			1
Library						2			2
Lobby				2					2
Student Dining					1				1
Classroom					1				1
Office							1		1
Restroom				1					1
JC				1					1
Exterior								5	5
Network Backbone	1	1	1						3
Total Equipment Quantity (School A)	1	1	1	70	37	5	22	5	
Total Equipment Quantity (School B)	1	1	1	42	20	2	5	0	

Material and labor costing for the wireless lighting controls in each school were estimated based on the equipment quantities estimated in Table 2. Labor costing for the lighting control devices was provided by SCA. Material costing was provided by the lighting designer. The total lighting control costing includes the material and labor costing for School A and School B respectively.

4.3 Total Lighting Costing

A summary of the costs associated with the implementation of both the retrofit and new fixture replacement options for both schools was generated to determine a total cost estimate These costs include material and labor costs for the retrofits/fixtures, as well as material and labor costs for the control devices and programming. The calculations show the material cost for the retrofit replacement installation is less than the new fixture replacement for both schools. Labor cost for the retrofit replacement option is more than the new fixture replacement option for both schools. The controls device material and labor costs are the same between the retrofit and the new fixture options. A 50\% additional cost has been applied by SCA to the material and labor costing to account for project overhead, profit, general conditions, and escalation.

5 Energy Assessment

5.1 Energy and Cost Savings

Replacing the existing fluorescent lighting fixtures at School A and School B with retrofit or new LED fixtures will result in significant energy savings and carbon reduction. As previously noted, the predominant light fixtures in both schools consist of T8 fluorescent lighting with aging ballasts. Minimal lighting control was also observed within both schools resulting in increased energy usage. As the currently installed ballasts continue to age the lamp life spans will shorten. Without a proper lighting controls system in place, lighting can also be left on in unoccupied and overlit spaces, resulting in increased energy usage.

Shown in Table 3 below are the energy, carbon emissions, and cost savings from implementing retrofit and new lighting fixture replacements at School A. The results show significant energy savings (3.3 to $3.6 \mathrm{kBtu} / \mathrm{sf}$) and carbon savings (28.9 to 31.3 metric tons of $\mathrm{CO}_{2} \mathrm{e}$) for both options. The annual avoided cost ranges from about $\$ 35,700$ to $\$ 40,000$ for the two upgrade options. The new fixture replacement option shows both a (slightly) reduced capital cost and increased energy and carbon savings over the retrofit replacement option.

Table 3. School A Lighting Implemenation and Savings							
Lighting Upgrade Option	Annual Lighting Savings (kWh)	Annual Cooling Savings (kWh)	Annual Oil Savings (gal)	Energy Savings (kBtu/sf)	GHG Emissions Savings (metric tons of $\mathrm{CO}_{2} \mathrm{e}$)	Annual Avoided Cost	Estimated Capital Construction Cost
Retrofit Fixtures	197,969	28,370	$(2,702)$	3.29	28.9	\$35,700-\$40,000	Costs not available in public verison
New Fixtures	214,388	30,723	$(2,926)$	3.56	31.3	\$35,700-\$40,000	Costs not available in public verison

Shown in Table 4 below are the energy, carbon emissions, and cost savings from implementing retrofit and new lighting fixture replacements at School B. The results show significant energy savings (3.6 to $3.8 \mathrm{kBtu} / \mathrm{sf}$) and carbon savings (11.7 to 12.4 metric tons of $\mathrm{CO}_{2} \mathrm{e}$) for both options. The annual avoided cost ranges from about $\$ 12,900$ to $\$ 13,800$ for the two upgrade options. The new fixture replacement option shows both a (slightly) reduced capital cost and increased energy and carbon savings over the retrofit replacement option.

Table 4. School B Lighting Implemenation and Savings							
Lighting Upgrade Option	Annual Lighting Savings (kWh)	Annual Cooling Savings (kWh)	Annual Oil Savings (gal)	Energy Savings (kBtu/sf)	GHG Emissions Savings (metric tons of $\mathrm{CO}_{2} \mathrm{e}$)	Annual Avoided Cost	Estimated Capital Construction Cost
Retrofit Fixtures	73,524	10,536	(910)	3.61	11.7	\$12,900-\$13,800	Costs not available in public verison
New Fixtures	78,275	11,217	(975)	3.82	12.4	\$12,900-\$13,800	Costs not available in public verison

As previously mentioned in Section 3.2 of this report, the light levels seen within the classrooms were well above the SCA Design Requirements and were above the threshold of 35 FC for classrooms set within these requirements. Due to the existing lighting arrangement of typically 12 fixtures (3×4) recessed in the classrooms, the light level requirement could not be achieved
even with the lowest lumen output new fixtures. The SCA light level design requirement was found to be more feasible when the light fixture layout is 2 rows of direct/indirect fixtures that distribute the light 70% up and 30% down. Since this is not the case in School A and School B ceilings, removal of a row of the light fixtures within the schools was reviewed with the lighting designer as a potential solution to help reduce the high light levels. Implementing this reduction in light fixtures in classrooms would not only allow the classrooms to be properly lit, but also result in additional energy and cost savings. The energy and cost savings are indicated in Table 5 below.

For School A, the typical classroom LPD would reduce from $0.35 \mathrm{~W} / \mathrm{ft}^{2}$ to $0.26 \mathrm{~W} / \mathrm{ft}^{2}$ and an addition annual lighting energy consumption savings of $8,739 \mathrm{kWh}$ can be achieved.

For School B, the classroom LPD would reduce from $0.35 \mathrm{~W} / \mathrm{ft}^{2}$ to $0.27 \mathrm{~W} / \mathrm{ft}^{2}$ and an additional annual lighting energy consumption savings of $4,337 \mathrm{kWh}$ can be achieved.

There would be an additional labor cost associated with implementing this lighting fixture reduction in classrooms above that of a 1:1 lighting fixture replacement, as previously determined.

Table 5. Lighting Savings with Removed Light Fixture Row						
Lighting Upgrade Option	Annual Lighting Savings (kWh)	Annual Cooling Savings (kWh)	Annual Oil Savings (gal)	Energy Savings (kBtu/sf)	GHG Emissions Savings (metric tons of $\mathrm{CO}_{2} \mathrm{e}$)	Annual Avoided Cost
School A	8,739	1,252	(119)	1.1	1.3	\$400-\$450
School B	4,337	68	(55)	1.0	0.5	\$150-\$200

As previously noted in Section 3.3 of this report, the implementation of lighting controls throughout the spaces at School A and School B required per SCA Design Requirements Section 7.2.1 D would produce energy savings over the existing limited lighting controls within School A and School B. Currently, there are minimal automatic lighting controls in School B and no automatic lighting controls in School A. Wireless lighting control systems were researched throughout the study and were found to have many benefits over wired lighting control systems. Some benefits of wireless lighting controls include both a reduced labor and material cost when compared to a wired lighting control system. The proposed fixtures selected for this study for both retrofit and new fixture designs come standard with integrated controls allowing these fixtures to connect to the proposed wireless lighting control network.

Typical lighting energy reductions from implementing a lighting control system such as this were researched during this study. As indicated in a recent NEEA / DLC sponsored study "Energy Savings from Networked Lighting Control Systems with and without LLLC" completed in 2020, typical savings from implementing a lighting control system (similar to this Acuity type controls system that is part of this study) within studied existing schools was found to result in lighting energy savings ranging from 19 to 58% with an average savings of 41% in the education buildings. For the purposes of this study, a 30\% lighting energy reduction, for implementing both occupancy and daylighting control in SCA required spaces, was assumed. This reduction was applied to the
already high efficiency low wattage lighting retrofit and new fixture designs, resulting in a modest energy and cost savings for the lighting controls implementation at both schools. Table 6 shows the potential energy and cost savings if SCA required controls are integrated into the lighting system at School A. As shown in the table a total of $18,299 \mathrm{kWh}$ savings is estimated annually for the proposed retrofit lighting fixture option and 15,611 kWh for the proposed new lighting fixture option at School A, with full lighting control integration in required areas as per SCA Design standard Section 7.2.1D Lighting Controls. Table 7 below shows a total savings of 6,571 kWh for the proposed retrofit lighting fixture option and 5,732 kWh for the proposed new lighting fixture option at School B. Based on these results, applying lighting controls to the lighting fixture upgrade design is found to have a small energy and carbon savings impact since both the retrofit and new fixture designs have already reached fairly low wattages and energy consumption. However, SCA's approach and as required by code, the lighting controls would be upgraded at the same time as the lighting fixture upgrade.

Table 6. School A Lighting Controls Savings							
Lighting Upgrade Option	Annual Lighting Savings (kWh)	Annual Cooling Savings (kWh)	Annual Oil Savings (gal)	Energy Savings (kBtu/sf)	GHG Emissions Savings (metric tons of $\mathrm{CO}_{2} \mathrm{e}$)	Annual Avoided Cost	Estimated Capital Construction Cost
Retrofit Fixtures	18,299	3,220	(307)	0.25	2.2	\$800-\$850	Costs not available in public verison
New Fixtures	15,611	2,488	(237)	0.24	2.1	\$700-\$750	Costs not available in public verison

Table 7. School B Lighting Controls Savings							
Lighting Upgrade Option	Annual Lighting Savings (kWh)	Annual Cooling Savings (kWh)	Annual Oil Savings (gal)	Energy Savings (kBtu/sf)	GHG Emissions Savings (metric tons of $\mathrm{CO}_{2} \mathrm{e}$)	Annual Avoided Cost	Estimated Capital Construction Cost
Retrofit Fixtures	6,571	942	(115)	0.22	0.7	\$250-\$300	Costs not available in public verison
New Fixtures	5,732	821	(100)	0.19	0.6	\$200-\$250	Costs not available in public verison

6 Appendix

6.1 Appendix A - Original Lighting Design Drawing Floor Plans
6.2 Appendix B - OLA Existing Lighting Fixture Counts
6.3 Appendix C - SCA Lighting Design Standards/Requirements
6.4 Appendix D - Retrofit Lighting Fixture Designs \& Light Level Calcs
6.5 Appendix E - New Lighting Fixture Designs \& Light Level Calcs
6.6 Appendix F - Proposed Retrofit and New Lighting Fixtures
6.7 Appendix G - Proposed Lighting Control Network and Cutsheets
6.8 Appendix H - Typical Wireless Lighting Control Design Plans

6 Appendix

6.1 Appendix A - Original Lighting Design Drawing Floor Plans
6.2 Appendix B - OLA Existing Lighting Fixture Counts
6.3 Appendix C - SCA Lighting Design Standards/Requirements
6.4 Appendix D - Retrofit Lighting Fixture Designs \& Light Level Calcs
6.5 Appendix E - New Lighting Fixture Designs \& Light Level Calcs
6.6 Appendix F - Proposed Retrofit and New Lighting Fixtures
6.7 Appendix G - Proposed Lighting Control Network and Cutsheets
6.8 Appendix H - Typical Wireless Lighting Control Design Plans

Appendix A:

Lighting Design Drawing Floor Plans

APPENDIX A－LIGHTING DESIGN DRAWINGS

swan	vesemenom	ses．	wax ma	w
$\square 0$				

coex mo pealc anorss ssiu sweo us				
smax	vssaremer	usf．	wextw	wo
s^{p}				
Ex				
н				
B．				
k_{1}				
kim				
－（6）．				
（0）	wemame onutrioex veme．			
4				
［01］				
\square				
四	move tuwc coman			
（1）．				
［Ls）	Leatis sum ssiu			
－4				
®				

SCHOOL A LIGHTING DESIGN DRAWINGS

LIGHTING SYMBOL LIST				
sm	wxem	ast．	maxum	wo
\square				
\square	RECESSED MOUNTED 2＇X 4＇FLUORESCENT LIGHTING FIXTURE ON EMERGENCY INSCRIPTION DENOTES FIXTURE TYPE．SUBSCRIPTION DENOTES SWITCH CONTROL．			
\square				
\square	RECESSED MOUNTED 2＇X 2＇FLUORESCENT LIGHTING FIXTURE ON EMERGENCY INSCRIPTION DENOTES FIXTURE TYPE．SUBSCRIPTION DENOTES			
$\stackrel{\square}{\square}$				
匹。				
\square				
\square				
可。				
－				
\bigcirc				
\bigcirc				
$\dot{-}_{x 1}^{*}$	WALL MOUNTED EXIT LIGHT．SUBSCRIPT DENOTES FIXTURE TYPE． DIRECTIONAL ARROWS INDICATED．SUBSCRIPT＇D＇INDICATES EXIT FOR DESABIED．SUPERSRIPT＇G＇DENOTES WITH GUARD．			
$\ddot{\theta}_{x}$				
W－				
$\begin{aligned} & \alpha-0-\alpha+\alpha, \\ & 0 \rightarrow-\alpha \end{aligned}$				
－				
1				
${ }^{+}$				

swa	ussamen	sf．	wxwm	wo
細				
紸	nex menememax			
［10	arusan eaum			
［	meater coor nuxie			
四	memato oxe muss．			
四	we cuen weer smat			
四	nex mexan mosmex			
四	nut num messus smex			
四	sumese sment			
®				
㽞	\％mone mut			
包	some wect			
［ix				
囫	10\％Men aum			
［ume	nex ssurucumam mena．			
比				
\％				
\square	\％ex ssum pus smou			
8	res sout bam			
易				
\square_{0}				
16				
1%	\％			
昌。				
迆	ns crover meac．			
（8）	actu．sane ofrcese			
（1）				
（1）				
㭡				
$0_{\text {stil }}$				
四	Cowne zum			
四	wemore zum			

LIGHTNG FixTuRE SCHEDULE							
me	Eax	noumo	ums	maxicuse	auss	vats	mamers
	comy	necsso	${ }_{\text {3－230－18 }}^{\text {\％}}$		accrame	${ }^{27 N}$	
－	Smanesifen	кessso	${ }^{2004-18}$	Hexters			
	kxceen	vexicssum	2－00－18				vernemameme
－	siomess	necsso	${ }^{1-2, y m}$	Hersux			
	coumerim	necsso	${ }^{3}-323-18$	Lamay			
	extreas	necsso	${ }^{2.85 n-18}$	Hexicke			
＊	vect smens	（simecicic or		Uniturix			
＂		m＂					
	Sunera bume	nessso	ceme				us
J	omossum	Peouer	coime				（mmomexes）
\cdots	anmssum	peomer					${ }^{\text {wim meme }}$
к	Notramem	кесsso	${ }^{2.2300}$	Lematix frew			
－	Norosam	${ }^{\text {reamam }}$	«om			${ }_{\text {rov }}$	
4	${ }^{\text {smact }}$	Peomer	${ }^{2300}$			${ }^{27 n}$	
${ }^{\prime}$	canors	m＂	semwt				
＂	camens	messso	＇sou wh	кentat meons			
＊	Leer	mecsso	${ }^{1-700}$ meses				
－		cin sumel					
0	sune ast	simect or					
．	ass nete mu	Peower	$\underbrace{\text { a }}$	（ention			
－	Ssomed		${ }^{3-18}$	Hemaxe			
－	souese		${ }^{3-18}$	Hexame			
s	comons	necsso	4enutut				
s	cremoss	кecsso					
！	tuear	kessso	${ }^{2}$	Hexterex			
－	svoera omuct	necssio	${ }^{\text {s－amx }}$				
＂	suoern omma	кесsso	${ }^{2.46}$	Hempuex			
\checkmark	mat mex	mu	${ }^{1500}$	momememe			
	${ }_{\text {cosemememe }}$	atis iomm	Le．	Sticters			

GENERAL NOTES

Natin
1.

ABBREVIATIONS

\cdots	merta		mono	
\cdots	ar canomore		ncout	
wT	core tuseo noos	${ }_{6}$	nembupme cunar	
${ }^{4 C}$			amcrow mox	
arc	wrounc rimmune conta		enar-amer	
$a \mathrm{ar}$	Nrounc murtip mich	**	momar	
∞	${ }^{2}$ omeres		Lom	
${ }_{c}^{\infty}$	to miour	$\stackrel{ }{ }$	Lormac Pne	
${ }_{8}$	Comaur maner	unv		
criv		*		
	man is		commo	
$\stackrel{1}{4}$	${ }_{\text {cosmen }}$	π	courmo	
as	cuma	"	cocomit	
∞	corm matas	\cdots	-	
∞	comemations	\cdots	mancory	
${ }_{\infty}^{\infty}$	COMPUTER PME. coperer	o.c.	an comer	
ast.	Osmautas			
of	comascr fowis.		\%omp	
$\stackrel{\infty}{\infty}$	asman iou penc.		\triangle	
	asmercomar	${ }_{\text {per }}$		
ER	enst mitry ur to numin	${ }_{\text {t. }}$	micmar:	
tw		\cdots	Tlifsom	
${ }_{\text {Exe }}$	Exs:*	win	umiss onerwx met	
\%	incan	-		
${ }_{5 \times}$	nxios		actamen	SYEA LST NOTES
f	fice			SMEQ LST, MOTES
ruor	sucascas			\& FXTIFE SCHEXE
a	cerat canar -		Expespmoes	me Ezicind
				amove
				2E-1
				\% ${ }^{\text {cosen }}$

Appendix B:

OLA Lighting Fixture Counts

School B Lighting Fixture Counts

Appendix C:

SCA Lighting Design Requirements

Design Requirements

Electrical and Communication Services-Section 7.0

7.2 Lighting Systems

7.2.1 Interior Lighting

Description/Design Approach:
A. Energy Efficient Lighting Luminaires

1. Luminaires shall be high efficiency LED.
2. In general, Lighting Systems shall conform to NYC Green Schools Guide Credit S6.1R - Light Pollution Reduction, Credit Q5.1R - Controllability of Systems, Lighting and Credit Q7.5 Visual Performance, Artificial, Direct-Indirect Lighting and the 2020 NYC Energy Conservation Code (NYCECC), which includes the NYC modifications to ASHRAE 90.12016.
3. The number of different luminaires shall be limited as much as possible. Custom luminaires shall be avoided
B. Illumination Levels
4. The following are illumination levels for typical functional areas. This listing is intended to provide guidance in the design of lighting for the indicated areas as well as for other areas (unlisted) that have similar functions.
5. Listed illumination levels are average maintained values in foot-candles (FC) and are predicated on a thirty-inch (30 ") reference work plane, unless otherwise noted. Where multiple functions and multiple lighting levels are indicated for a particular area, it is intended that multiple switching be provided to achieve same. In all cases, compliance with IES minimum recommended illumination levels and the 2020 NYCECC watts per square foot limitations is intended. The maximum LPD per space is at or below ASHRAE 90.1-2016 levels, as modified by Appendix CA of the 2020 NYCECC, though they will typically be much lower to meet the required overall building LPD. Total building lighting power density (LPD) using the 2020 NYCECC - ASHRAE 90.1-2016 procedure shall be a maximum of: 0.5 $\mathrm{w} / \mathrm{ft}^{2}$ for new PS, IS, HS and Additions, Modernizations and new ECC. These are the values utilized in the SCA's prototypical energy modeling as a means to meet LL $31 / 16$ goals. The total building LPD shall be determined utilizing ASHRAE Methodology. Trade-offs among spaces is permitted provided that the total LPD is not exceeded, though based on LED technology trade-offs should not be required for most spaces to maintain the indicated foot-candle levels.

Area	FC LEVEL	Maximum LPD*
Auditorium	$* 4$	
Primary and Intermediate Schools		
General	40	$0.63 \mathrm{~W} / \mathrm{ft}^{2}$
Aisles	2	
High School		$0.63 \mathrm{~W} / \mathrm{ft}^{2}$
Theatrical/General Use/Study Room	$15 / 30 / 40$	
Stage - General	30	
Production	(As Required)	
Aisles	2	$0.39 \mathrm{~W} / \mathrm{ft}^{2}{ }^{* 6}$
Boiler Room	30	

Cafeteria/Lunchroom	30*4	$0.53 \mathrm{~W} / \mathrm{ft}^{2}$
Serving Area	40	0.92 W/ft ${ }^{2}$
Cafetorium	$30^{* 4}$	$0.63 \mathrm{~W} / \mathrm{ft}^{2}$
Classrooms	35*2	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Community Rooms	40	$0.7 \mathrm{~W} / \mathrm{ft}^{2}$
Computer Rooms	30/35	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Corridors	20@18" AFF	$0.55 \mathrm{~W} / \mathrm{ft}^{2 * 3}$
Dance Studios	40@18"AFF	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Duplication Room	30	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Electric Closets	30	$0.39 \mathrm{~W} / \mathrm{ft}^{2}$ * 6
Elevator Machine/Control Room/Spaces	*5	$0.39 \mathrm{~W} / \mathrm{ft}^{2}$ *6
Exam Areas of Medical Suites/Clinics	50	1.1 W/ft ${ }^{2}$
Exercise Room	30	0.5 W/ft ${ }^{2}$
Gymnasium	*4	
General	30	0.75 W/ft ${ }^{2}$
Bleacher	20	0.43 W/ft ${ }^{2}$
Gymatorium	30	0.75 W/ft ${ }^{2}$
Janitor Closets	20	0.43 W/ft ${ }^{2}$
Kitchen	50	$0.92 \mathrm{~W} / \mathrm{ft}^{2}$
Laboratories	50	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$
Library		
General	30	0.77 W/ft ${ }^{2}$
Reading	40	0.77 W/ft ${ }^{2}$
Stacks	20 @ 18" AFF	0.77 W/ft ${ }^{2}$
Lobby	30	0.90 W/ft ${ }^{2}$
Locker Rooms	20 @ 18" AFF	0.45 W/ft ${ }^{2}$
Mechanical Areas - Service Areas	30	0.42 W/ft ${ }^{2}$
Media Centers/TV Studios	30/40	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$
Offices	35	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Pipe Chases/Crawl Spaces	10	
Playroom	30	0.5 W/ft ${ }^{2}$
Records Room	20 @ 18" AFF	$0.6 \mathrm{~W} / \mathrm{ft}^{2}$
Shops \& Areas with Critical Visual Tasks	50	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$
Shower Rooms	20	0.75 W/ft ${ }^{2}$
Staff - Lunchroom/Lounge	30	$0.44 \mathrm{~W} / \mathrm{ft}^{2}$
Resource Center/Workroom	30/50	$1.0 \mathrm{~W} / \mathrm{ft}^{2}$
Stairs	20	$0.5 \mathrm{~W} / \mathrm{ft}^{2}$
Storage Rooms	30	0.43 W/ft ${ }^{2}$
Swimming Pools		
Poolside	30	1.20 W/ft ${ }^{2}$
Bleachers	20	$0.4 \mathrm{~W} / \mathrm{ft}^{2}$
Switchboard Rooms	30	$0.39 \mathrm{~W} / \mathrm{ft}^{2}{ }^{\text {* }}$
Telecommunication Rooms	30	$0.39 \mathrm{~W} / \mathrm{ft}^{2}{ }^{\text {* }}$
Toilets	20	0.75 W/ft ${ }^{2}$

* Denotes total average power density for particular spaces and includes all power densities for all areas within the space. For auditoriums, this power density shall be calculated utilizing a 40 FC setting, excluding the theatrical stage lighting. Submit computer generated lighting calculations and Lighting Power density at 60% Design for the following (Sample of typical classroom, general office, corridors, libraries, cafeteria and gymnasium). Also submit total LPD for the entire school.
*2 Classroom foot-candle calculations shall exclude the levels in the area 3 feet around the perimeter of each classroom but shall include lighting over all teaching surfaces. Average maintained level at 30 " AFF shall be a minimum of 35 FC with an average to minimum ratio not to exceed 2.5 . For calculation purposes, use a light loss factor of 0.9 and room reflectance of $90 / 60 / 25$ (Ceiling/walls/floors)
*3 Corridors with lockers can use the requirement for locker rooms.
*4 PA space foot-candle calculations shall exclude the levels in the area 3 feet around the perimeter of each space. Average maintained level at $30^{\prime \prime}$ AFF shall be the indicated FC with an average to minimum ratio not to exceed 2.5 to ensure even lighting. For calculation purposes, use a light loss factor of 0.9 and room reflectance of 80/50/20 (Ceiling/walls/floors). Locations where providing such maximum ratio may increase the LPD above the required maximums shall be discussed with A\&E.
*5 Must be 19 fc minimum at floor level for entire room per ASME 17.1.

School Construction Authority
*6 Up to an additional . $52 \mathrm{~W} / \mathrm{ft}^{2}$ is permitted if controlled separately from the base allowance of 0.43 . Ensure minimum foot candle levels are met.
C. Lighting Fixture Requirements by Space

1. General: Designers shall utilize those manufacturers and model numbers indicated in Section 16502 (LED Interior Lighting) of the Standard Specification as their Basis of Design.
2. Instructional Space and Library: Direct/indirect, ceiling pendant luminaires. For typical classrooms measuring approximately $29^{\prime} \times 26$ ', lighting shall consist of two (2) rows of direct /indirect, ceiling pendant-mounted luminaires spaced approximately 12' on center to produce optimum lighting. The distance between the wall and the luminaires at the front of the run (the front wall with the marker boards) should be no more than 3'. Luminaires lighting distribution shall be $70-\%$ up and 30% down. The total luminary efficiency of the luminaires shall be 90% or better. Mounting shall be such that the bottom of the luminaires shall not be lower than 8'-0" in Early Childhood Centers and Primary Schools and 8'-6" in Intermediate Schools and High Schools, with the optimum fixture to ceiling distance ranging from 14" to 24". For non-conventional shaped instructional spaces (spaces not measuring approximately $29^{\prime} \times 26^{\prime}$), the quantity of pendant luminaires, rows of pendant luminaires, and their spacing shall vary as required to provide the required foot-candle levels and minimize lighting power density.
3. District 75 Classrooms: Pendant mounted indirect, 100% up-light to be used
4. Office and Cafeteria: Recessed 2'x4' luminaires,
5. Corridor: Recessed $2^{\prime} \times 4$ ' or 2×2, luminaires (based on ceiling grid selected)
6. Gymnasium: High Bay, non-glare luminaires with impact resistance lens
7. Kitchen Areas, Kitchen Storerooms and Servery Areas: Recessed 2'x2' luminaires, for metal pan ceiling using a lay in system such as Armstrong "Metal Works-Flush Tegular" with, gasket, UL listed for wet location, NSF C-2 certification, with silicone sealant on all seams.
8. Stair: 4' luminaires, wrap around, with vandal resistant lens.
9. Storage/Mechanical Space: 1' x 4' or $1^{\prime} \times 8^{\prime}$ luminaires
10. Shower Room: Recessed 1' x 4' luminaires, gasket, UL listed for wet location.
11. Toilet/Locker Room: Recessed 2'x4' luminaires
12. Auditorium, Main Lobby, Library and luminaires at the Main Entrance: The lighting designer may select luminaires suited to the aesthetic of the spaces.
D. Lighting Controls
13. All interior lighting shall automatically be controlled by a programmable Lighting Control Panel with integral clock except for the emergency lighting. The Lighting Control Panel shall be provided at the Electric Closet and shall control all spaces that do not have 100\% automatic shut-off and/or Occupant sensors.
14. All stairs, locker/shower rooms and multi-user student toilet luminaires shall be set to 50% power levels in the unoccupied state using occupancy Sensors (Auto-ON) to bring it up to 100% when space is occupied.
15. Each area enclosed by walls or floor-to-ceiling partitions shall have at least one switch to control the lighting within. Due to the nature of schools and the need for safety and the potential for vandalism or horseplay, the code allowed exception to eliminate controls where safety is concerned has been utilized for some spaces. For (CIP) projects, window row (in a two or three luminaires row room) shall have the ability to be switched off manually.
16. Daylight Harvesting
a. Provide for all spaces with windows where required per the 2020 NYC Energy Conservation Code. Daylight Harvesting per section C405.2.3 of 2020 NYCECC and Section 9.4.1.1.e of ASHRAE 90.12016 as modified by Appendix CA is required for New Construction in all areas with windows when total fenestration area in sidelighted daylight area is 24 SF per C405.2.3 or 20 SF per 9.4.1.1.e (whichever standard is used for the design) or greater and the general lighting in the primary sidelight area is 100 W or greater.
b. Install daylight harvesting sensor to control both rows in each classrooms and offices (with windows) to maintain required foot-candle (closed loop and dual loop sensors to be used in skylight application).
c. Place the closed loop sensor between 1 to 2 times the height of the window away from the window (typically 12-15 ft. from the window).
d. Provide room controller to control both rows of light.
e. Provide an over-ride four position push button switch set to off, $\mathbf{3 0} \%, \mathbf{7 0 \%}$ and 100%.
f. For all gymnasiums with skylights (as required by Section C402.4.2), provide daylight harvesting controls as required by Section C405.2.3.1 of the 2020 NYCECC and Section 9.4.1.1.f of ASHRAE 90.1-2016 as modified by Appendix CA. Auditorium type spaces are not required to have skylights.
g. When daylight harvesting is not provided in spaces with windows, the designer to include in the GSG submission the following in support of justification that a daylight sensor is not required by code:

- Area of window within the space
- Daylight (sidelighted) area within the space
- Wattage of lighting fixtures within the Daylight area

The following table provides guidelines for the individual controls for each space and is in keeping with the 2020 NYC Energy Code. Daylight harvesting controls are not indicated in the Local Automatic Control/Sensor column, as the requirements are described above and is dependent on several factors. 'Not Required' in this column applies to when either occupancy or vacancy sensors are not to be provided. Sensor locations described in the comment field do apply to the daylight harvesting sensors. The descriptions are typically for new construction and locations may need to be altered for CIP projects.

AREA	$\begin{aligned} & \text { LOCAL MANUAL } \\ & \text { CONTROL/SWITCH } \end{aligned}$	$\begin{aligned} & \text { LOCAL AUTOMATIC } \\ & \hline \text { CONTROL/SENSOR } \end{aligned}$	COMMENTS
PUBLIC ASSEMBLY SPACES			
Auditorium			
General Lighting	Three-way dimming key pad	Vacancy sensor	Three-way dimming keypad to control house lighting to be located at the entrance and stage. Ceiling mounted sensors For existing auditorium projects, discuss with SCA.
Stage Area	Toggle switch	Not required	Switches to control non-theatrical stage lights to be located at the stage.
Gymnasium			
General Lighting, Emergency Circuit	Key-operated line voltage switch	Occupancy sensor	Switch at one entrance to turn on lights on emergency. All fixtures Normally at 50\% of power level; turns to 100\% on motion - (C405.2.1.4)
General Lighting, nonemergency circuit	Key-operated switch	Occupancy sensor	Switches for general lighting to be located at same entrance as emergency lighting switch. Ceiling/corner/fixture mounted sensors depending on fixture height and required coverage.
Gymatorium \quad 年			
General Lighting	Three-way dimming key pad	Vacancy sensor	Three-way dimming keypad to control house lighting to be located at the entrance and stage. Ceiling mounted sensors Daylight harvesting sensors to be luminaire mounted for those fixtures in the daylight zone to avoid interference with the zoning provided for the theater function.
Stage Area	Toggle switch	Not required	Switches to control non-theatrical stage lights to be located at the stage
Cafeteria/Lunch room			
General Lighting, Emergency Circuit	Key-operated line voltage switch	Not required	Switch at one entrances to turn on emergency lights that will also provide minimal entry/circulation illumination. Circuiting for lights to allow them to turn on upon loss of power if they are turned off.
General Lighting, nonemergency circuit	Key-operated low voltage switch	Occupancy sensor	Switches for general lighting to be located at same entrance as emergency lighting switch. Ceiling/corner/fixture mounted sensors depending on fixture height and required coverage.
Kitchen	Toggle switch	Not required	

Design Requirements
Electrical and Communication Services - Section 7.0
\(\left.$$
\begin{array}{|c|c|c|l|}\hline \text { Cafetorium } & & & \\
\hline \text { General lighting } & \begin{array}{c}\text { Three-way dimming key } \\
\text { pad }\end{array} & \text { Vacancy sensor } & \begin{array}{l}\text { Three-way dimming keypad to control } \\
\text { house lighting to be located at the } \\
\text { entrance and stage. Ceiling mounted } \\
\text { sensors For existing auditorium } \\
\text { projects, discuss with SCA }\end{array} \\
\hline \text { Stage Area } & \text { Toggle switch } & \text { Not required } & \begin{array}{l}\text { Switches to control non-theatrical stage } \\
\text { lights to be located at the stage }\end{array} \\
\hline \text { Library } & & & \begin{array}{l}\text { Three-way switches at entrance and at } \\
\text { Librarian desk. Ceiling mounted } \\
\text { sensor. }\end{array} \\
\hline \text { Reading } & \begin{array}{c}\text { Three-way dimming pad }\end{array} & \text { Vacancy sensor } & \begin{array}{l}\text { Three-way switches at entrance and at } \\
\text { Librarian desk. Ceiling mounted } \\
\text { sensor. }\end{array} \\
\hline \text { High Stacks } & \begin{array}{c}\text { Three-way low-voltage } \\
\text { switch }\end{array} & \text { Vacancy sensor } & \begin{array}{l}\text { Three-way switches at entrance and at } \\
\text { Librarian desk. All luminaires in High }\end{array}
$$

\hline Stare area shall be equipped with\end{array}\right]\)| occupancy and daylight harvesting |
| :--- |
| sensors |

Storage Rooms	Low-voltage 2-Button Dimmer Switch switch	Vacancy sensor	Wall-mounted sensor/switch
Switchboard Rooms	Toggle switch	Not required	
Telecommunication Rooms/ Closets	Low voltage switch	Vacancy sensor	Wall-mounted sensor/switch
CIRCULATION AREAS			
Lobby	Key-operated switch (Emergency light only)	Occupancy sensor/Daylight harvesting sensor	Key operated switch located at main entrance for emergency lighting. Ceiling mounted sensor(s) for nonemergency lighting luminaires. All fixtures Normally at 50\% of power level; turns to 100% on motion (C405.2.1.4)
Corridors	Key-operated switch (Emergency light only)	Occupancy sensor/ Daylight harvesting sensor built-in luminaire(s) near window	Key operated switch located at main entrance for emergency lighting. Ceiling mounted sensor(s) for nonemergency lighting luminaires. All fixtures Normally at 50\% of power level; turns to 100% on motion (C405.2.1.4)
Stairs	Key-operated switch	Built-in Occupancy Sensor in each luminaire Daylight harvesting sensor built-in luminaire(s)	Key operated switch located at main entrance for emergency lighting in stairs (all luminaires in stairs are emergency). Normally at 50% of power level (if minimum fc are met); turns to 100% on motion - Life safetylsecurity per C405.2 exception
PHYSICAL EDUCATION			
Locker Rooms(Students)	Key-operated switch	Built-in occupancy sensor in each luminaire	Normally at 50\% of power level; turns to 100\% on motion - Life safetylsecurity per C405.2 exception
Locker Room (Adult)	Low voltage switch	Vacancy sensor	Wall-mounted sensor/switch - Ceiling mounted if partition
Shower Rooms	Key-operated switch	Built-in occupancy sensor in each luminaire	Normally at 50% of power level; turns to 100% on motion. Luminaire mounted sensor - Life safetylsecurity per C405.2 exceptions
Swimming Pools	Key-operated switch	Not required	
Poolside	Key-operated switch	Not required	
Bleachers	Key-operated switch	Not required	
Exercise Room	Low-voltage switch	Vacancy sensor	Ceiling-mounted sensor(s)
TOILETS			
Staff Toilet (single user)	Line voltage switch	Occupancy sensor	Wall-mounted sensor/switch
Staff Toilet (Multi-user)	Low voltage switch	Occupancy sensor	Ceiling-mounted sensor(s)
Student Multi-user Toilets	Key-operated switch	Built-in occupancy sensor in each luminaire	Normally at 50% of power level; turns to 100% on motion - Life safetylsecurity per C405.2 exceptions
Student Classroom Toilets	Line voltage switch	Occupancy sensor	Wall-mounted sensor/switch
Student Toilet (single user)	Line voltage switch	Occupancy sensor	Wall-mounted sensor/switch

a. Instructional space: For spaces 2,000 SF or less in area, lighting shall be controlled by one ceiling mounted vacancy sensor/daylight harvesting sensor and one 4-button switch located by the classroom entrance door.
b. Track luminaires in Labs to have a dedicated single on/off switch by the teacher's desk.

School Construction Authority
c. For CIP projects, required sensors in most spaces will likely need to be wall mounted, typically near the front corner. Designer is to submit all designs for review.
d. All sensors in corridors, student locker rooms, stairs and bathroom to be set for 5 minutes
e. Note that not all Room Planning Standards have been updated to incorporate all revisions to the controls. Follow the above table and modify the room requirements as appropriate.

School Construction Authority

Design Requirements

Electrical and Communication Services - Section 7.0

7.2 Lighting Systems

7.2.2 Stage and Platform Lighting for Primary and Intermediate Schools

Description/Design Approach:
A. General

1. A dimming system shall be provided for auditorium/gymatorium stage area/platform lighting. The dimming system shall control spotights and border lights via a stage control panel mounted on the stage area/platform and/or a remote portable control console that can be plugged into remote outlets. (Emergency lighting is not part of the dimming system and shall not be dimmed.)
2. Minimum requirements for a standard primary school and intermediate school configuration are indicated below. These may be augmented and modified to accommodate larger facilities (high schools), though a specialty consultant is typically to be utilized for those facility designs.
3. Coordinate exact location and mounting height of all fixtures with the Architect.
B. Requirements for Primary School Stages Less Than Thirty (30) Feet Wide and Fifteen (15) Feet Deep
4. Spotlights
a. Two (2) sets of spotlights shall be provided, ideally located 45 degrees up and 45 degrees to the left and right of the centerline of the stage. Each set shall consist of four (4) 6 " zoom type ellipsoidal reflector spotlights. Spotlights shall have a knob-adjustable beam angle of $25-50$ degrees to allow for adjustment to actual stage size. Fixtures shall be paired to light the Left, Center and Right portions of the stage, with the fourth fixture pair as a Front Special. Fixtures shall use LED with five individually controllable LED colors as per Section 16502, capable of producing 75 fc with lens set for 30 degrees, 20 feet away. In new construction, spotlight sets shall be housed inside ceiling pocket.
b. Mounting: Each spotlight shall be secured to a $1^{1 / 2}$ " iron pipe batten by means of a cast iron "C" clamp. One safety cable shall be provided for each spotlight.
c. Control: All spotlights shall be controlled by dimmers.
d. Electrical: Each spotlight shall be provided with a 3 -foot, 3 -wire flexible cable terminated in a 20 amp 3 -wire stage pin plug. Four (4) 20 amp receptacles shall be set in an outlet box for each set of spotlights. Spotlight and stage pin receptacle outlet box shall be U.L. listed and grounded as per manufacturer's requirements.
5. Border Lights
a. Two (2) rows of border lights shall be provided above the platform. Each border light shall be color mixed LED with DMX controls with a minimum of five individually controlled LEP colors per Section 16502.

School Construction Authority
Architecture \& Engineering

Design Requirements

Electrical and Communication Services - Section 7.0
b. Mounting: Each border light shall be equipped with a heavy steel trunnion securely fastened to each of the cast steel end plates and equipped with iron "C" clamps for $1^{11 / 2 "}$ pipe mounting. Each unit shall be provided with a tilt adjust knob and two safety cables.
c. Control: One dimmer per circuit, one control channel per color.
d. Electrical: Border light shall be U.L. listed and provided with \#12 cable and grounding conductor. Cable shall be terminated in a terminal junction box. Terminal junction box shall also include (2) stage pin receptacle outlets for two Overhead Special dimming circuits. Two Overhead Special Circuits are parallel wired to each border light row.
3. Dimmer Racks
a. Dimmer racks shall be wall mounted dead front type. They shall accept plug-in electronic control modules and be designed to contain up to 24 plug-in dimmer modules each rated at 2.4 KW .
b. Dimmer racks shall be provided with a lockable door.
c. Dimmer racks shall be $120 / 208 \mathrm{~V}, 3$-phase, 4 -wire, 60 Hz A.C. and U.L. listed.
4. Portable Control Console
a. Control console shall be microprocessor-based with 24 channels for two scene preset and manual operations, and switchable to 96 channels, 500 cues for advanced operation. Each dimmer shall be individually controllable with the control console. Console shall allow SubMaster grouping of control for multiple circuits such as border light colors. Console shall also have display and on-screen help menus.
b. Output of console shall be a digital multiplexed signal USITT Standard DMX-512
c. Two (2) 5-pin XLR type DMX input receptacles shall be provided for the control console. One shall be located at rear of room and another near stage control panel on platform. Provide one (1) fifty (50) foot extension DMX control cable. DMX control receptacles shall be located within two (2) feet of a 120 volt receptacle.
5. Stage Control Panel
a. Stage control panel shall be equipped with faders and master intensity control to provide easy playback and recording of a minimum of 8 lighting presets. Manual sliders shall be provided for Left, Center, Right and Front Special spotlights, Overhead Clear, Amber, Red and Blue Borderlights, two Overhead Specials and Two Stage Specials.
b. Stage control panel shall be wall mounted inside a lockable enclosure located on stage (Enclosure to be flush mounted in new construction and surface mounted in existing building).
6. Entry Stations

Provide additional single gang control stations at entry doors. Entry Stations shall have a key lockable cover and allow selection of the first preset and off.

7. Worklights

Worklights above the platform shall be building standard LED of the type used elsewhere in the room and shall be switched separately from the dimming system.
C. Requirements for Intermediate School Stages/Primary School Stages Greater Than Thirty (30) Feet Wide and Fifteen (15) Feet Deep, or any Stage with Front Curtain and Stage Apron Area

1. Spotlights
a. Two (2) sets of spotlights shall be provided, ideally located 45 degrees up and 45 degrees to the left and right of the centerline of the stage. Each set shall consist of eight (8) $6 "$ zoom type ellipsoidal reflector spotlights. Spotlights shall have a knob-adjustable beam angle of 25-50 degrees to allow for adjustment to actual stage size. Fixtures shall be paired to light the Left, Center and Right portions of the stage in front of the curtain line, and Left, Center and Right behind the curtain, with the seventh and eighth fixture pair as Front Specials. Provide one additional non-dimmed circuit controlled by the dimmer rack at each location. Fixtures shall use LED with five individually controllable LED colors as per Section 16502, capable of producing 75 fc with lens set for 30 degrees, 20 feet away. In new construction, spotlight sets shall be housed inside ceiling pocket.
b. Mounting: Each spotlight shall be secured to a $1 \frac{1}{1 / 2}$ iron pipe batten by means of a cast iron "C" clamp. One safety cable shall be provided for each spotlight.
c. Control: All spotlights shall be controlled by dimmers.
d. Electrical: Each spotlight shall be provided with a 3-foot, 3-wire flexible cable terminated in a 20 amp 3-wire stage pin plug. Nine (9) 20 amp receptacles shall be set in an outlet box or strip for each set of spotlights. Spotlight and stage pin receptacle outlet box shall be U.L. listed and grounded as per manufacturer's requirements.
2. Border Lights
a. Three (3) rows of border lights shall be provided above the platform. Each border light shall be color mixed LED with DMX controls with a minimum of five individually controlled LEP colors per Section 16502.
b. Mounting: Each border light shall be equipped with a heavy steel trunnion securely fastened to each of the cast steel end plates and equipped with iron "C" clamps for $11 / 2$ " pipe mounting. Each unit shall be provided with a tilt adjust knob and two safety cables.
c. Control: One dimmer per circuit.
d. Electrical: Border light shall be U.L. listed and provided with \#12 cable and grounding conductor. Cable shall be terminated in a terminal junction box. Terminal junction box shall also include four (4) stage pin receptacle outlets for four (4) Overhead Special dimming circuits. The four Overhead Special Circuits are parallel wired to each border light row.
Requirement Applies to: \checkmark New Construction $\quad \checkmark$ Major Modernizations Capital Improvement Projects

School Construction Authority
Architecture \& Engineering

Design Requirements
 Electrical and Communication Services - Section 7.0

3. Dimmer Racks
a. Dimmer racks shall be wall mounted dead front type. They shall accept plug-in electronic control modules and be designed to contain up to 48 plug-in dimmer modules each rated at 2.4 KW .
b. Dimmer racks shall be provided with a lockable door.
c. Dimmer racks shall be $120 / 208 \mathrm{~V}$, 3-phase, 4 -wire, 60 Hz A.C. and U.L. listed.
4. Portable Control Console
a. Control console shall be microprocessor-based with 48 channels for two scene preset and manual operations, and switchable to 250 channels, 10,000 cues for advanced operation. Each dimmer shall be individually controllable with the control console. Console shall allow SubMaster grouping of control for multiple circuits such as border light colors. Console shall also have display and on-screen help menus.
b. Output of console shall be a digital multiplexed signal USITT Standard DMX-512
c. Two (2) 5-pin XLR type DMX input receptacles shall be provided for the control console. One shall be located at rear of room and another near stage control panel on platform. Provide one (1) fifty (50) foot extension DMX control cable. DMX control receptacles shall be located within two (2) feet of a 120 volt receptacle.
5. Stage Control Panel
a. Stage control panel shall be equipped with faders and master intensity control to provide easy playback and recording of a minimum of 8 lighting presets. Manual sliders shall be provided for Left, Center, Right Front spotlights, Left, Center and Right Stage Spotlights, (2) two Front Special spotlights, Overhead Clear, Amber, Red and Blue Borderlights, (4) four Overhead Specials and (4) four Stage Specials.
b. Stage control panel shall be wall mounted inside a lockable enclosure located on stage (Enclosure to be flush mounted in new construction and surface mounted in existing building).
6. Entry Stations

Provide additional single gang control stations at entry doors. Entry Stations shall have a key lockable cover and allow selection of the first preset and off.
7. Worklights

Worklights above the platform shall be building standard LED of the type used elsewhere in the room and shall be switched separately from the dimming system.

School Construction Authority

7.2 Lighting Systems

7.2.3 Emergency Lighting

Description/Design Approach:

A. General

1. Emergency lighting shall be provided for all areas listed in Design Requirement 7.1.2.
2. Illumination levels required for emergency lighting shall be as follows:

$$
\begin{aligned}
& \text { Places of Assembly - Auditorium, Cafeteria, Gymnasium, Gymatorium } \\
& \text { General/ Aisle/Cross isles } \\
& \text { General/Aisle/Cross isles } \\
&
\end{aligned}
$$

Places of Assembly - Auditorium, Gymatorium
Exterior exit lights immediately 5 foot-candles measured at the floor over the adjacent to exit doorways leading specified area per BC 1028.17.4.5 into yards and courts

Exit Doors - 1 foot-candles measured at the floor
Corridors, exits, exit discharges, 1 foot-candles measured at the floor
Areas of Refuge and stairs
Exits, in high-rise buildings with existing Photoluminescent markings

Fire Rescue Areas/

Areas of Rescue Assistance 1 foot-candle measured at the floor
Safe Areas, including all stairs, 5 foot-candles measured at the floor ramps, etc within the area

Corridor sign for Fire Rescue Area/
Area of Rescue Assistance
2 foot-candles measured at the floor

25 foot-candles measured at sign
B. Buildings with Generator

1. In new buildings, major modernizations, or major additions where an emergency generator is being provided, provide power for Emergency Lighting through the Emergency Systems automatic transfer switch as described in DR 7.1.2.
C. Buildings without Generator
2. In buildings not provided with an emergency generator, emergency luminaire shall be connected to a power source recognized by the NYC Electrical Code Section 700-12.
Requirement Applies to: \checkmark New Construction $\quad \checkmark$ Major Modernizations $\quad \checkmark \quad$ Capital Improvement Projects

School Construction Authority
2. The emergency luminaires in the Places of Assembly and the paths of egress to the outside shall be controlled by a relay with sensing circuit off the local lighting panel. A key operated test switch shall be wired into the control circuit.

School Construction Authority

Design Requirements
Electrical and Communication Services - Section 7.0

7.2 Lighting Systems

7.2.4 Exit Signs

Description/Design Approach:

Exit signs shall be in accordance with Section BC 1011 of the 2014 NYC Building Code. Locations of exit signs shall be designated on the Contract Drawings by the Architect of Record. Means of egress shall be clearly marked by illuminated exit signs with 8 " letters so that exits and path of egress are easily recognized from any point in a corridor or Place of Assembly. Exit signs placement shall be such that no point in an exit access corridor is more than 100 feet or the UL ${ }^{1}$ listed viewing distance for the sign, whichever is less, from the nearest visible exit sign. Wall mounted exit signs are preferred over pendant mounted exit signs. Pendant mounted exit signs should be strictly limited to meet visibility requirements, and only when additional wall mounted units may not suit the need.

Exit signs shall be coordinated with Fire Alarm Strobes so that a minimum separation of five feet is maintained.

For buildings with a generator, exit signs shall be connected to the emergency lighting panel through transfer switch.

For buildings without a generator, exit signs shall be provided with battery packs and fed from the same source as the area lighting for the space.

Note:
1 Manufacturers may request UL to test their self-luminous or electroluminescent exit signs at lesser distances. UL requires those signs to be marked with the legible viewing distance. The NYC DOB recognizes other nationally listed labs that perform tests in accordance with the UL standard.

School Construction Authority
Architecture \& Engineering
Design Requirements
Electrical and Communication Services - Section 7.0

7.2 Lighting Systems

7.2.5 Exterior/Site/Security Lighting

Description/Design Approach:

1. General

Exterior/site/security lighting shall be provided around the perimeter of the school and on playing fields for safe passage of students and staff and to deter theft and vandalism. Lighting design shall minimize light trespass from the building and site, reduce sky glow, improve nighttime visibility through glare reduction and reduce development impact on nocturnal environment.

For capacity and major modernization projects, design shall comply with all the requirements of NYC Green Schools Guide Credit for Light Pollution Reduction.

2. Lighting Levels

Provide computer generated lighting calculations for the entire school site. Provide calculations for building perimeter. Calculation results shall show horizontal illuminance on ground level. Where required, provide calculations in compliance with NYC Green Schools Guide Credit for Light Pollution Reduction.
a. All entrances, exits and walkways, including exit discharge to public way: 1.0 FC min . as per BC1006.2 of the 2014 NYC Building Code. Exterior fixtures immediately adjacent to exit discharge doorways are required to be connected to emergency power. Refer to DR 7.2.3.
b. All Auditorium, Cafeteria, Gymnasium, Gymatorium or Cafetorium exit doors that open into an exit discharge area in schoolyard: 5.0 FC min. over the required area. Refer to $B C 1028.17 .4$. 5 for requirements.
c. Building perimeter: 1.0 FC (average maintained) to a 20 -foot depth from the building with 0.1 FC minimum and 5 FC maximum. These levels shall be reduced to comply with Light Pollution Reduction Credit if building perimeter is on the site boundary.
d. Site (athletic fields security lighting): 0.5 FC (average maintained) with 0.01 FC minimum and 5 FC maximum. These levels shall be reduced to comply with Light Pollution Reduction Credit if building perimeter is on the site boundary.
3. Design Parameters

Due to the aesthetics of exterior lighting, its impact on a school facade and the difficulty in describing multiple elevations on a plan, it is essential that the designer provide building elevations to clearly depict the location and mounting height of each fixture.

The exterior lighting should not exceed 80% of the lighting power densities as defined by ANSI/ASHRAE/IESNA Standard 90.1-2013, Exterior Lighting Section, without amendment. All new building projects shall be classified under one of the following exterior Lighting Zones and shall follow the requirements for the specific zone. Determination of the Lighting Zones indicated below for the specific project shall be based on RCNY 5000-01 of the Rules of the City of New York, which assigns an exterior Lighting Zone to each zoning district in the New York City Zoning

[^0]School Construction Authority
Architecture \& Engineering

Design Requirements
 Electrical and Communication Services - Section 7.0

Resolution. While it is the intent on each project to meet this credit, it may be difficult to achieve for buildings placed on the Street Line and fixtures should not be lowered to a height where they will be subject to vandalism to meet the credit. The design is to be discussed with the Authority once this condition is ascertained.

LZ1 - Dark (Park Land and Rural Settings)

Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.01 horizontal and vertical foot-candles at the site boundary and beyond. Document that 0% of the total initial designed fixture lumens are emitted at an angle of 90 degrees or higher than nadir. As per RCNY 5000-01: Parkland.

> LZ2 - Low (Residential Area)

Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.10 horizontal and vertical foot-candles at the site boundary and no greater than 0.01 horizontal foot-candles 10 feet beyond the site boundary. Document that no more than 2% of the total initial designed fixture lumens are emitted at an angle of 90 degrees or higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site. As per RCNY 5000-01; All R districts, R districts with C overlays, and $M X$ districts.

LZ3 - Medium (Commercial/Industrial, High-Density Residential)

Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.20 horizontal and vertical foot-candles 15 feet beyond the site. Document that no more than 5% of the total fixture lumens are emitted at an angle of 90 degrees of higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. As per RCNY 5000-01: M districts, except MX; C districts, except C5, C6 and C overlays on R districts.

LZ4 - High (Major City Centers, Entertainment Districts)

Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.60 horizontal and vertical foot-candles at the site boundary and no greater than 0.01 horizontal foot-candles 15 feet beyond the site. Document that no more than 10% of the total initial designed site lumens are emitted at an angle of 90 degrees or higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. As per RCNY 5000-01: C5 and C6 districts.
4. Lighting Equipment

Lighting levels shall be achieved utilizing the following equipment:
a. Light Source: The light source for all exterior lighting shall be High Efficiency LED Luminaires and shall have a minimum of 50,000 hours of operation and comply with the IESNA LM-80 test method. All Luminaries shall be DLC certified (Design Lights Consortium)
b. Luminaires: Luminaire selection shall be coordinated with the architect so as to complement and accent architectural features. Luminaires for perimeter lighting shall be wall surface
mounted at a maximum of 15 feet above grade for ease of service. Roof parapet mounted luminaires may be used only in special circumstances with the written approval from the Authority

- Luminaires shall have cutoff optical system in compliance with N.Y.C. Green Schools Guide Light Pollution Reduction Credit. Use of non-cutoff luminaires shall not be utilized and may be only permitted for the following applications: sports lighting, construction lighting, historic restoration lighting, lighting for architectural features and sculptures.
- Luminaires shall have high reflectivity segmented optical system with minimum efficiency of (66%). Lighting distribution NEMA Type III and Type IV shall be used.
- Luminaires shall have a minimum IP 65 rating, a minimum 2G vibration tested and shall be UL 1598 listed for 25 degrees Celsius ambient temperature application.
c. Poles: The usage and quantities of poles shall be limited and may be used only with the written approval of the SCA Design Manager. When parapet mounted luminaires can not achieve the intended site lighting criteria, pole mounted fixtures may be provided. Site lighting poles shall be anodized aluminum (tapered or square) with an overall maximum mounting height of forty (40) feet. Higher mounting heights may be considered only when heavy-duty poles are justified by unusual site conditions such as athletic field lighting. Mounting heights 25 feet and lower should be avoided to limit the number of poles and luminaires and to minimize-light trespass. Spill light optical shields shall be used to minimize light behind pole to a 2% of the total lamp lumens.

In general, pole foundations shall be designed by a structural engineer and shown on the structural contract drawings with all conduit entries and exits. Poles shall be provided with a suitable lockable hand-hole and grounding lug. Plug fusing shall be provided on each circuit phase leg within the hand-hole.
d. Lighting Control: In new construction and major modernization, all site security lighting shall be master controlled by the building lighting management system. For Capital Improvement Projects, the security lighting shall be controlled by time clock, photocell and multi-pole lighting contactor. In all cases, the photocell shall be circuited in parallel to time clock such that either one will activate the site security lighting.
e. Raceways: In general, raceway shall be run on the inside face of the parapet and/or concealed in the building interior. Exposed raceway on building facades is not permissible.

7.2 Lighting Systems

7.2.6 Athletic Field/Sports Lighting

Description/Design Approach:

Athletic field lighting shall be provided only when requested specifically by the Department of Education Program of Requirements. The engineer must verify that the request is not intended for Security/Site Lighting.

In the event that Sports Lighting is confirmed, the designer shall follow the IES recommendations for the application.

When poles are required, provide aluminum or steel poles, mounted around the perimeter of the site to facilitate maintenance without driving onto the field. Any poles not located on the perimeter must be accessible by roadway suitable for a bucket truck with 75^{\prime} boom to avoid driving on the synthetic turf or natural grass field.

Fixtures shall be selected for superior photometry minimizing the number of required fixtures and ease of maintenance/lamp replacement, while avoiding light pollution trespass to adjoining properties.

Appendix D:

Retrofit Lighting Fixture Designs

$$
\frac{\square}{\square \square}
$$

$$
\square \square \square \square \square_{\ominus}^{\square}
$$

$$
\begin{aligned}
& \square \\
& \square \\
& \square \\
& \square=
\end{aligned}
$$

$$
\begin{aligned}
& \square \quad \square \\
& \square \quad \square \\
& \square \square \\
& \square \\
& \square
\end{aligned}
$$

$$
\begin{gathered}
\square \\
\square
\end{gathered}
$$

$\square \square \square$
\square
0
0

Note 1. THESE LLGHTING CALCULATIONS ARE NOT A SUBSTITUTE FOR INDEPENDENT ENGINEERING ANALYSIS OF LIGHTING SUITABILTTY AND SAFETY
2. THIS PHOTOMETRICS LAYOUT WAS CALCULATED USING SPECIFIC CRITERIA, ANY DEVIATION FROM STATED 2. THIS PHOTOMETRICS LAYOUT WAS CALCCLATED
PARAMETERS WILL AFFECT ACTUAL PERFORMACE.
3. ALL QUANTITIES ARE BASED ON FIXTURES SHOWN IN THE LIGHTING CALCULATIONS ONLY.
4. HEESE CALCULTTIONS ARE BASED ON LISTED FIXURES ONLY. SUBSTITUTION OF THESE FIXTURES voIDS ALL
CALCULATIONS.

CALCULATIONS.
5. ALL SUBSTITTIONS REQUIRE NEW CALCULATIINS BASED ON THE FIXTURES SUPPLIED.
6. ACTUAL LITHT LEVELS MAY VARY DUE TO ACTUAL FIXTURE LOCATIONS AND FIELD CONDITIONs,

Note 1 THESE LLGHTING CALCULATIONS ARE NOT A SUBSTITUTE FOR INDEPENDENT ENGINEERING ANALYSIS OF LIGHTING SUITABILTTY AND SAFETY
2. THIS PHOTOMETRICS LAYOUT WAS CALCULATED USING SPECIFIC CRITERIA, ANY DEVIATION FROM STATED PPARAMETERS WILL AFFECT ACTUAL $\operatorname{SERARORMANCE}$.
3. ALL QUANTITIES ARE BASED ON FIXTURES SHOWN IN THE LIGHTING CALCULATIONS ONLY
3. ALL QUANTITIES ARE BASED ON FIXTURES SHOWN IN THE LIGHTING CALCULATIONS ONLY.
4. THESE CALCULTTIONS ARE BASED ON LISTED FIXURES ONLY. SUBSTITUTION OF THESE FIXTURES VOIDS ALL
5. ALL LUBSSTTUTIONS REQURE NEW CALCULATIONS BASED ON THE FIXTURES SUPPLIED.
6. ACTUAL LIGHT LEVELS MAY VARY DUE TO ACTUAL FIXTURE LOCATIONS AND FIELD CONDITIONS,

Appendix E:

New Lighting Fixture Designs

Appendix F:

Proposed Lighting Fixture Cutsheets

FEATURES \& SPECIFICATIONS

INTENDED USE —The BLTR Best-Value Low Profile LED Relight Assembly is a cost effective solution for renovating existing fluorescent troffer and parabolic fixtures while providing upgraded aesthetics and outstanding performance. The BLTR's popular center basket design offers a clean, versatile style, and volumetric distribution. The wide range of lumen packages and control and driver options make the BLTR a great choice for many applications including offices, schools, hospitals, retail spaces and other general lighting applications.
CONSTRUCTION - Universal end brackets are constructed of 22-gauge powder-painted steel and are secured to the host fixture with provided TEKS ${ }^{m}$ screws. The driver and light engine assembly is integrated in the BTLR door assembly making this an extremely "simple", time saving, relight solution. The door frame and reflector assembly is a made of cold-rolled steel and is painted after fabrication with a matte white powder paint for improved aesthetics and increased light diffusion. Diffuser trim rings provide an attractive mounting for integral sensors as well as adding a decorative element to the luminaire aesthetics.
LED boards and driver are accessible from below.
OPTICS - Volumetric illumination is achieved by creating an optimal mix of light to walls, partitions and vertical and horizontal work surfaces - rendering the interior space, objects and occupants in a more balanced, complimentary luminous environment. High performance extruded acrylic diffusers conceal LEDs and efficiently deliver light in a volumetric distribution. Four diffuser choices available - curved and square designs with linear prisms or a smooth frosted finish.
ELECTRICAL - Long-life LEDs, coupled with high-efficiency drivers, provide superior quantity and quality of illumination for extended service life. 80\% LED lumen maintenance at 60,000 hours (L80/60,000).
Non-Configurable BLTR Relight: Generic 0-10 volt dimming driver. Dims to 10%
Configurable BLTR Relight: available in High Efficiency (HE) versions for applications where a lower wattage (over the standard product) is required. High Efficiency versions deliver >130 LPW and can be specified via the Lumen Package designations in the Ordering Information below.
eldoLED driver options deliver choice of dimming range, and choices for control, while assuring flicker-free, low-current inrush, 89\% efficiency and low EMI.
Step-level dimming option allows system to be switched to 50% power for complaince with common energy codes while maintaining fixture appearance.
Optional integrated nLight ${ }^{\ominus}$ controls make each luminaire addressable - allowing it to digitally communicate with other nLight enabled controls such as dimmers, switches, nLight AIR RIO, RES7 occupancy sensors and photo controls. Simply connect all the nLight enabled control devices and the BLTR Relight assembly using standard Cat-5 cabling. Unique plug-and-play convenience as devices and luminaires automatically discover each other and self-commission. Lumen Management: Unique lumen management system (option N80) provides on board intelligence that actively manages the LED light source so that constant lumen output is maintained over the system life, preventing the energy waste created by the traditional practice of overlighting. Driver disconnect provided where required to comply with US and Canadian codes.
SENSOR - Integrated sensor (individual control): Sensor Switch MSD7ADCX ((Passive infrared (PIR)) or MSDPDT7ADCX ((PIR/Microphonics Dual Tech (PDT)) integrated occupancy sensor/automatic dimming photocell allows the luminaire to power off when the space is unoccupied or enough ambient light is entering the space. See page 4 for more details on the integrated sensor.
Integrated Sensor (nLight Wired Networking):This sensor is nLight-enabled, meaning it has the ability to communicate over an nLight network. When wired, using CAT-5 cabling, with other nLight-enabled sensors, power packs, or WallPods, an nLight control zone is created. Once linked to a Gateway, directly or via a Bridge, the zone becomes capable of remote status monitoring and control via SensorView software. See page 4 for the nLight sensor options.
Integrated Smart Sensor (nLight Air Wireless Platform): The rES7 sensor is nLight AIR enabled, meaning it has the ability to communicate over the wireless nLight control platform. It is available with an automatic dimming photocell, and either a digital PIR or microphonics (PDT) dual technology occupancy sensor. It pairs to other luminaires and wall switches through our mobile app, CLAIRITYT, which allows for simple sensor adjustment. See page 4 for more details on the Integrated Smart Sensor.
INSTALLATION — After existing fluorescent components are removed from the host housing, universal end brackets are secured in place with TEKSTM screws. The BLTR's integrated driver and light engine door assembly can then be hinged to the universal end brackets and will hang in place for completion of assembly plug-in wiring. Rotate the doorframe assembly closed and pivot the cam latches to secure the doorframe in place. LED boards include plug-in connectors for easy replacement or servicing. Suitable for damp location installations. Damp location not available with sensor versions.
LISTINGS — UL/CUL Listed for use in fluorescent light fixtures. Installing Relight assemblies per instructions will not impact existing fixture UL listing. Tested to LM80 standards. DesignLights Consortium ${ }^{\oplus}$ (DLC) Premium qualified product. Not all versions of this product may be DLC Premium qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx
NOTE: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Catalog Number
Notes
Type

2BLTR Series LED Relight 2BLTR

$2^{\prime} \times 4^{\prime}$ Relight

Fit Compatibility:

The 2BLT4R Relight Assembly was designed to upgrade recessed 2×4 fixtures, including most parabolic and lensed troffers from all major manufacturers. Dimensional requirements are below, but Lithonia Lighting recommends a trial installation prior to purchasing project quantities.

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands'specification for chromatic consistency
- This luminaire is part of an A+Certified solution for nLight ${ }^{\oplus}$ control networks when ordered with drivers marked by a shaded background*
- This luminaire is part of an A+Certified solution for nLight control networks, providing advanced control functionality at the luminaire level, when selection includes driver and control options marked by a shaded background*

To learn more about $\mathrm{A}+$, visit www.acuitybrands.com/aplus.
*See ordering tree for details

Non-Configurable BLT								
Stock	Catalog Description*	UPC	Lumens	Wattage	LPW	Color Temperature	Voltage	Pallet Qty
Stock	2BLT4R 40L ADP LP835	190887550948	3960	32	124	$3500 \mathrm{~K} / 80 \mathrm{CRI}$	120-277	26
	2BLT4R 40L ADP LP840	190887550979	4023	32	127	$4000 \mathrm{~K} / 80 \mathrm{CRI}$	120-277	26
	2BLT4R 46L ADP LP835	190887550993	4520	38	118	$3500 \mathrm{~K} / 82 \mathrm{CRI}$	120-277	26
	2BLT4R 46L ADP LP840	190887551006	4620	38	121	$4000 \mathrm{~K} / 82 \mathrm{CRI}$	120-277	26

* Dims to 10\%

Notes

1 Consult factory for airflow data.
2 Approximate lumen output.
3 All versions may not achieve $130+$ LPW. Refer to photometry on www.acuitybrands.com.
4 Not available with EL7L or EL14L battery packs.
5 GZ1, GZ10 not available with any Control or Sensor options.
6 Not available with N80, N80EMG, N100, N100EMG, NLTAIR2, or occupancy control.
7 nLight EMG option requires a connection to existing nLight network. Power is provided from a separate N80 or N100 enabled fixture.
8 Must order with REST, RES7PDT, or RIO sensor. Only available with EZ1 driver. Not available with 72L, 72LHE, or 85LHE options.
9 Must specify diffuser with trims rings. See sensor options on page 4.
10 Requires N80, N80EMG, N100, or N100EMG.
11 Only available with EZ1 driver option. 0-10v dimming wires not accessible via access plate. Not available with Controls options.
12 Requires BSE labeling. Consult factory for options.
13 Must specify voltage, 120 or 277 with GLR \& GMF fusing.
14 GZ1 driver not available with battery pack when specifying 72LHE or 85LHE lumen options. Must use EZ1 driver.
15 Consult factory.

Multiple Diffuser Options

nLight ${ }^{\oplus}$ AIR Control Accessories:	
Order as separate catalog number. Visit www.acuitybrands.com/products/controls/nlightair.	
Wall switches	Model number
On/Off single pole	rPODB [color] G2
On/Off two pole	rPODB 2P [color] G2
On/Off \& raise/lower single pole	rPODB DX [color] G2
On/Off \& raise/lower two pole	rPODB 2P DX [color] G2
On/Off \& raise/lower single pole	rPODBZ DX WH G2

Application Guide

2BLT4R — Typically used for lensed troffer
installations. Assembly contains white end brackets and is supplied with white trim strips for use in closing gaps down fixture sides (installer's choice - not required).
*Note: This kit will fit in Lithonia's Avante non-air fixture.

2BLT4R A - Typically used for parabolic installations with black reveal. Assembly contains black end brackets to match black reveal around host housing. Does not interfere with host housing air supply/return if present (along fixture sides).

Notes
1 RCMS requires low voltage power from either RPP20 DS 24 V G2 or PS150.

FEATURES \& SPECIFICATIONS

INTENDED USE — The BLT Best-in-Value Low Profile LED luminaire features a popular center basket design that offers a clean, versatile style and volumetric distribution. High efficacy LED light engines deliver energy savings and low maintenance compared to traditional sources. An extensive selection of configurations and options make the BLT the perfect choice for many lighting applications including schools, offices and other commercial spaces, retail, hospitals and healthcare facilities. The low profile BLT design ($2-3 / 8$ ") also makes it an excellent choice for renovation projects.
CONSTRUCTION - BLT enclosure components are die-formed for dimensional consistency and painted after fabrication with a polyester powder paint for improved performance and protection.
The reflector is finished with a high reflective matte white powder paint for improved aesthetics and increased light diffusion.
End plates contain easy-to-position integral T-bar clips for securely attaching the luminaire to the T-grid. For additional T-grid security, optional screw on T-bar clips are available.
Diffusers are extruded from impact modified acrylic for increased durability.
LED boards and drivers are accessible from the plenum.
OPTICS - Volumetric illumination is achieved by creating an optimal mix of light to walls, partitions and vertical and horizontal work surfaces - rendering the interior space, objects and occupants in a more balanced, complimentary luminous environment. High performance extruded acrylic diffusers conceal LEDs and efficiently deliver light in a volumetric distribution. Four diffuser choices available - curved and square designs with linear prisms or a smooth frosted finish.
ELECTRICAL - Long-life LEDs, coupled with high-efficiency drivers, provide superior quantity and quality of illumination for extended service life. 80\% LED lumen maintenance at 60,000 hours (L80/60,000). Color Variation within 3 -step MacAdam ellipse (3SDCM).
Non-Configurable BLT: Generic 0-10 volt dimming driver. Dims to 10\%
Configurable BLT: available in High Efficiency (HE) versions for applications where a lower wattage (over the standard product) is required. The High Efficiency versions deliver > 130 LPW and can be specified via the Lumen Package designations in the Ordering Information below.
eldoLED driver options deliver choice of dimming range, and choices for control, while assuring flicker-free, low-current inrush, 89% efficiency and low EMI.
Optional integrated nLight ${ }^{\ominus}$ controls make each luminaire addressable - allowing them to digitally communicate with other nLight enabled controls such as dimmers, switches, occupancy sensors and photocontrols. Connection to nLight is simple. It can be accomplished with integrated nLight AlR wireless RIO, RES7 sensors, or through standard Cat-5 cabling. nLight offers unique plug-and-play convenience as devices and luminaires automatically discover each other and self-commission. nLight AIR is commissioned easily through an intuitive model app.
Lumen Management: Unique lumen management system (option N80) provides on board intelligence that actively manages the LED light source so that constant lumen output is maintained over the system life, preventing the energy waste created by the traditional practice of over-lighting.
Step-level dimming option allows system to be switched to 50% power for compliance with common energy codes while maintaining fixture appearance.
Driver disconnect provided where required to comply with US and Canadian codes.
SENSOR - Integrated sensor (individual control): Sensor Switch MSD7ADCX ((Passive infrared (PIR)) or MSDPDT7ADCX ((PIR/Microphonics Dual Tech (PDT)) integrated occupancy sensor/automatic dimming photocell allows the luminaire to power off when the space is unoccupied or enough ambient light is entering the space. See page 4 for more details on the integrated sensor.
Integrated Sensor (nLight Wired Networking): This sensor is nLight-enabled, meaning it has the ability to communicate over an nLight network. When wired, using CAT-5 cabling, with other nLight-enabled sensors, power packs, or WallPods, an nLight control zone is created. Once linked to a Gateway, directly or via a Bridge, the zone becomes capable of remote status monitoring and control via SensorView software. See page 4 for the n Light sensor options.
Integrated Smart Sensor (nLight Air Wireless Platform): The RES7 sensor is nLight AIR enabled, meaning it has the ability to communicate over the wireless nLight control platform. It is available with an automatic dimming photocell, and either a digital PIR or a microphonics (PDT) dual technology occupancy sensor. It pairs to other luminaires and wall switches through our mobile app, CLAIRITY, which allows for simple sensor adjustment. See page 4 for more details on the Integrated Smart Sensor.
INSTALLATION — The BLI's low profile design of only $2-3 / 8^{\prime \prime}$ provides increased installation flexibility especially in restrictive plenum applications. The BLT fits into standard $15 / 16^{\prime \prime}$ and narrow $9 / 16^{\prime \prime} \mathrm{T}$-grid ceiling systems.
Suitable for damp location.
For recessed mounting in hard ceiling applications, Drywall Grid Adapters (DGA) are available as an accessory. See Accessories section.
LISTINGS - CSA Certified to meet U.S. and Canadian standards. IC rated.
DesignLights Consortium ${ }^{\ominus}$ (DLC) Premium qualified product. Not all versions of this product may be DLC Premium qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at www.acuitybrands.com/CustomerResources/Terms_and_conditions.aspx
NOTE: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Catalog Number
Notes
Type

Depth with Air supply/return: 2-3/4 (6.9)

All dimensions are inches (centimeters) unless otherwise specified.

Multiple Diffuser Options

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands'specification for chromatic consistency
- This luminaire is part of an $\mathrm{A}+$ Certified solution for nLight ${ }^{\oplus}$ control networks when ordered with drivers marked by a shaded background*
- This luminaire is part of an A+Certified solution for nLight control networks, providing advanced control functionality at the luminaire level, when selection includes driver and control options marked by a shaded background*
To learn more about A+, visit www.acuitybrands.com/aplus.
*See ordering tree for details

ORDERING INFORMATION Lead times will vary depending on options selected. Consult with your sales representative. Example: 2BLT2 33L ADP EZ1 LP835							
2BLT2							
Series	Air function	Lumens ${ }^{2}$		Diffuser	Voltage	Driver	Color temperature
2BLT2 2X2 BLT	(blank) Static A Air supply/ return ${ }^{1}$	$\left.\begin{array}{l}\text { Standard } \\ \text { efficiency } \\ \text { (}>100\end{array}\right)$ LPW) 20L 2000 33L 40L 4300 48L 4000	High efficiency ${ }^{3,4}$ (>130 LPW) 20LHE 2000 33LHE 3300 40LHE 4000 48LHE 4800	ADP Curved, linear prisms ADSM Curved, smooth SDP Square, linear prisms SDSM Square, smooth Includes trim rings to match sensored version ADPT Curved, linear prisms ADSMT Curved, smooth SDPT Square, linear prisms SDSMT Square, smooth	(blank) MVOLT 120 120 V 277 277 V 347 $347 \mathrm{~V}^{5}$	EZ1 eldoLED dims to $1 \%(0-10$ volt dimming $)$ GZ1 Dims to 1% (0- 10V dimming) ${ }^{6}$ GZ10 Dims to 10\% (0- 10V dimming ${ }^{6}$ SLD Step-level dimming	LP830 $82 \mathrm{CRI}, 3000 \mathrm{~K}$ LP835 $82 \mathrm{CRI}, 3500 \mathrm{~K}$ LP840 $82 \mathrm{CRI}, 4000 \mathrm{~K}$ LP850 $82 \mathrm{CRI}, 5000 \mathrm{~K}$ LP930 $90 \mathrm{CRI}, 3000 \mathrm{~K}$ LP935 $90 \mathrm{CRI}, 3500 \mathrm{~K}$ LP940 $90 \mathrm{CRI}, 4000 \mathrm{~K}$ LP950 $90 \mathrm{CR}, 5000 \mathrm{~K}$

Non-Configurable BLT								
Stock/MTO	Catalog Description *	UPC	Lumens	Wattage	LPW	Color Temperature	Voltage	Pallet Qty
Stock	2BLT2 33L ADP LP835	00190887529708	3332	26	128	$3500 \mathrm{~K} / 82$ CRI	$120-277$	52
	2BLT2 33L ADP LP840	00190887529739	3385	26	130	$4000 \mathrm{~K} / 82$ CRI	$120-277$	52
	2BLT2 33L ADP EL14L LP835	00190887529890	3332	26	128	$3500 \mathrm{~K} / 82 \mathrm{RI}$	$120-277$	52
	2BLT2 33L ADP EL14L LP840	00190887529937	3385	26	130	$4000 \mathrm{~K} / 82 \mathrm{CRI}$	$120-277$	52
MT0	2BLT2 33L ADP 347 LP835		3332	26	128	$3500 \mathrm{~K} / 82$ CRI	347	52
	2BLT2 33L ADP 347 LP840		3385	26	130	$4000 \mathrm{~K} / 82$ CRI	347	52

[^1]
Notes

1 Consult factory for airflow data.

Approximate lumen output.
All versions may not achieve $130+$ LPW. Refer to photometry on www.acuitybrands.com.
Air supply/return option, 90 CRI, and versions with integral sensor trim rings may not achieve 130 LPW.
Not available with SLD EL7L, or EL14L options.
GZ1 and GZ10 not available with any Control or Sensor options
7 Not available with N80, N80EMG, N100, N100EMG, NLTAIR, or occupancy control.
8 Not available with controls, occupancy controls, or PWS options. Consult factory for Hi-Lume dimming.
9 nLight EMG option requires a connection to existing nLight network. Power is provided from a separate N80 or N100 enabled fixture.
10 Must order with RES7, RESTPDT or Rio module. Must order with EZ1 driver.

11 Must specify diffuser with trim rings. See sensor options on page 4.
12 Requires N80, N8OEMG, N100, or N100EMG.
13 Only available with EZ1 driver option. $0-10 \mathrm{v}$ dimming wires not accessible via access plate.
4 When using pre-wire option, use PWS1846 or PWS1846 PWSLV.
5 For more information, please see the PSSD2 specification sheet.
16 Not available with N80, N80EMG, N100, or N100EMG.
7 Must specify voltage. Requires BSE labeling, voltage specific. Consult factory for options.
18 Not available with nLight wired/wireless network or individual controls.
9 Must specify voltage, 120 or 277 , with GLR and GFM fusing.
0 For ordering logic consult RRL 2013.
21 Not available with air supply/return or Wired Networking (NES_) and Individual Control (MSD_) sensors.

Accessories:	Order as separate catalog number.
DGA22	Drywall grid adapter for 2×2 recessed fixture
2X2SMK	Surface Mount Troffer Kit

nLight ${ }^{\ominus}$ Wired Control Accessories:			
Order as separate catalog number. Visit www.acuitybrands.com/products/controls/nlight.			
WallPod stations	Model number	Occupancy sensors	Model number
On/Off	nPODM [color]	Small motion 360°, ceiling (PIR / dual tech)	nCM 9 RJB/nCM PDT 9 RJB
On/Off \& raise/lower	nPODM DX [color]	Large motion 360 , ceiling (PIR / dual tech)	nCM10 RJB / nCM PDT 10 RJB
Graphic touchscreen	nPOD GFX [color]	Wall switch with raise/lower	nWSX PDT LV DX [color]
Photocell controls	Model number	Cat-5 cable (plenum rated)	Model number
Full range dimming	nCM ADCX RJB	10^{\prime} cable	CAT5 10FT J1
		30^{\prime} cable	CAT5 30FT J1

nLight ${ }^{\text {}}$ AIR Control Accessories: Order as separate catalog number. Visit www.acuitybrands.com/products/controls/nlightair. Wall switches	Model number
On/Off single pole	rPODB [color] G2
On/Off two pole	rPODB 2P [color] G2
On/Off \& raise/lower single pole	rPODB DX [color] G2
On/Off \& raise/lower two pole	rPODB 2P DX [color] G2
On/Off \& raise/lower single pole	rPODBZ DXWH G2

rCMS ${ }^{1}$							Example: RCMS PDT 10 AR G2		
Series / Detection	Power Supply ${ }^{1}$		Occupancy Detection		Lens (Required)		Operating Mode	Generation	
RCMS nLight AIR occupancy and daylight sensor	[blank] PS 150	Power Supply ordered separately Standard 150 mA Power Supply	[blank] PDT	PIR Detection Dual Tech PIR/ Microphonics	10 9 6	Large Motion/ Extended Range 360° Small Motion/ Extended Range 360° High Bay 360° Lens	[BLANK] None AR $\quad \begin{aligned} & \text { Auxiliary } \\ & \text { Relay }\end{aligned}$	G2	Generation 2 compatibility

Replacement Parts: Order a s separate catalog number.		
*247WJV	2DBLT24 ADP LENS ASSEMBLY	2 ft . replacement lens
*249P2P	2DBLT24 SDP LENS ASSEMBLY	2 ft . replacement lens
*249P2W	2DBLT24 ADSM LENS ASSEMBLY	2 ft . replacement lens
*249P32	2DBLT24SDSM LENS ASSEMBLY	2 ft . replacement lens
*237LT1	20BLT24 ADPT LENS ASSEMBLY	2 ft . replacement lens
*237LT3	2DBLT24 SDPT LENS ASSEMBLY	2 ft . replacement lens
*237LT5	2DBLT24 ADSMT LENS ASSEMBLY	2 ft . replacement lens
*237LT7	2DBLT24 SDSMT LENS ASSEMBLY	2 ft . replacement lens
*237LT9	2DBLT24 ADPT SENSOR LENS ASSEMBLY	2 ft . replacement lens
*237M4Y	2DBLT24 SDPT SENSOR LENS ASSEMBLY	2 ft . replacement lens
*237M57	2 DBLT24 ADSMT SENSOR LENS ASSEMBLY	2 ft . replacement lens
*237M5H	2DBLT24 SDSMT SENSOR LENS ASSEMBLY	2 ft . replacement lens

Notes
1 RCMS requires low voltage power from either RPP20 DS 24V G2 or PS150.

2BLT Volumetric Recessed Lighting 2'x2'

Performance Data					
Material	Lumens	LPW	Watts	DLC Listing	DLC ID
2BLT2 20L ADP EZ1 (GZ10) LP835 (ALL OPTIONS)	2033.0	126.6	16.1	Premium	P6445UVD
2BLT2 20L ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	2016.0	124.8	16.2	Premium	PWKF5HGQ
2BLT2 20L ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	2065	124.1	16.6	Premium	PM92196A
2BLT2 20L ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	2038.0	126.9	16.1	Premium	PYX15QEQ
2BLT2 33L ADP LP835	3332.0	124.9	26.7	Premium	PQXU3PWX
2BLT2 33L ADP EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	3332.0	124.9	26.7	Premium	PHSXHE8F
2BLT2 33L ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	3287.0	125.1	26.3	Premium	PTKZR9WQ
2BLT2 33L ADP LP840	3385.2	126.9	26.7	Premium	PPWS1PPC
2BLT2 33L ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	3385.0	126.9	26.7	Premium	PD18CKQ8
2BLT2 33L ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	3340.0	125.2	26.7	Premium	PF98CZ2H
2BLT2 40L ADP EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	4041.0	127.4	31.7	Premium	P1XWW9GV
2BLT2 40L ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	3987.0	125.7	31.7	Premium	P1XWW9GV
2BLT2 40L ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	4105.0	129.4	31.7	Premium	PHCQ2CQF
2BLT2 40L ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	4050	127.65	31.7	Premium	P5YYDAA8

DLC information is subject to change, for the most up-to-date information please refer to www.dlc.org. Above listings do not cover 347v or SLD.

HE Performance Data					
Material	Lumens	LPW	Watts	DLC Listing	DLC ID
2BLT2 20LHE ADP EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	1948.0	130.6	14.9	Premium	PUOCZNQI
2BLT2 20LHE ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	1901.0	130.0	14.6	Premium	PQXK6498
2BLT2 20LHE ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	1979	132.7	14.9	Premium	PJCZRW21
2BLT2 20LHE ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	1952.0	130.9	14.9	Premium	PLC4RF4L
2BLT2 33LHE ADP EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	3392.0	137.3	24.7	Premium	PXXZN9PH
2BLT2 33LHE ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	3346.0	135.5	24.7	Premium	PZC8BZSS
2BLT2 33LHE ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	3446.0	139.5	24.7	Premium	PKPJYYRF
2BLT2 33LHE ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	3400.0	137.6	24.7	Premium	PM5G8AFU
2BLT2 40LHE ADP EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	4118.0	133.7	30.8	Premium	PJ55XFFP
2BLT2 40LHE ADPT EZ1 (GZ1, GZ10) LP835 (ALL OPTIONS)	4063.0	131.9	30.8	Premium	P8E16E9B
2BLT2 40LHE ADP EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	4183.0	135.9	30.8	Premium	PEGFHPZD
2BLT2 40LHE ADPT EZ1 (GZ1, GZ10) LP840 (ALL OPTIONS)	4128	134.04	30.8	Premium	PFRSSSVG

DLC information is subject to change, for the most up-to-date information please refer to www.dlc.org. Above listings do not cover 347v or SLD.

FEATURES \& SPECIFICATIONS

INTENDED USE - The BLTR Best-Value Low Profile LED Relight Assembly is a cost effective solution for renovating existing fluorescent troffer and parabolic fixtures while providing upgraded aesthetics and outstanding performance. The BLTR's popular center basket design offers a clean, versatile style, and volumetric distribution. The wide range of lumen packages and control and driver options make the BLTR a great choice for many applications including offices, schools, hospitals, retail spaces and other general lighting applications.
CONSTRUCTION - Universal end brackets are constructed of 22-gauge powder-painted steel and are secured to the host fixture with provided TEKS ${ }^{m}$ screws. The driver and light engine assembly is integrated in the BTLR door assembly making this an extremely "simple", time saving, relight solution. The door frame and reflector assembly is a made of cold-rolled steel and is painted after fabrication with a matte white powder paint for improved aesthetics and increased light diffusion. Diffuser trim rings provide an attractive mounting for integral sensors as well as adding a decorative element to the luminaire aesthetics.
LED boards and driver are accessible from below.
OPTICS - Volumetric illumination is achieved by creating an optimal mix of light to walls, partitions and vertical and horizontal work surfaces - rendering the interior space, objects and occupants in a more balanced, complimentary luminous environment. High performance extruded acrylic diffusers conceal LEDs and efficiently deliver light in a volumetric distribution. Four diffuser choices available - curved and square designs with linear prisms or a smooth frosted finish.
ELECTRICAL — Long-life LEDs, coupled with high-efficiency drivers, provide superior quantity and quality of illumination for extended service life. 80\% LED lumen maintenance at 60,000 hours (L80/60,000).
Non-Configurable BLTR Relight: Generic 0-10 volt dimming driver. Dims to 10\%
Configurable BLTR Relight: available in High Efficiency (HE) versions for applications where a lower wattage (over the standard product) is required. High Efficiency versions deliver >130 LPW and can be specified via the Lumen Package designations in the Ordering Information below.
eldoLED driver options deliver choice of dimming range, and choices for control, while assuring flicker-free, low-current inrush, 89\% efficiency and low EMI.
Step-level dimming option allows system to be switched to 50% power for complaince with common energy codes while maintaining fixture appearance.
Optional integrated nLight ${ }^{\ominus}$ controls make each luminaire addressable - allowing it to digitally communicate with other nLight enabled controls such as dimmers, switches, nLight AIR RIO, RES7 occupancy sensors and photo controls. Simply connect all the nLight enabled control devices and the BLTR Relight assembly using standard Cat-5 cabling. Unique plug-and-play convenience as devices and luminaires automatically discover each other and self-commission. Lumen Management: Unique lumen management system (option N80) provides on board intelligence that actively manages the LED light source so that constant lumen output is maintained over the system life, preventing the energy waste created by the traditional practice of overlighting. Driver disconnect provided where required to comply with US and Canadian codes.
Driver disconnect provided where required to comply with US and Canadian codes.
SENSOR— Integrated sensor (individual control): Sensor Switch MSD7ADCX ((Passive infrared (PIR)) or MSDPDT7ADCX ((PIR/Microphonics Dual Tech (PDT)) integrated occupancy sensor/automatic dimming photocell allows the luminaire to power off when the space is unoccupied or enough ambient light is entering the space. See page 4 for more details on the integrated sensor.
Integrated Sensor (nLight Wired Networking):This sensor is nLight-enabled, meaning it has the ability to communicate over an nLight network. When wired, using CAT-5 cabling, with other nLight-enabled sensors, power packs, or WallPods, an nLight control zone is created. Once linked to a Gateway, directly or via a Bridge, the zone becomes capable of remote status monitoring and control via SensorView software. See page 4 for the nLight sensor options.
Integrated Smart Sensor (nLight Air Wireless Platform): The rES7 sensor is nLight AIR enabled, meaning it has the ability to communicate over the wireless nLight control platform. It is available with an automatic dimming photocell, and either a digital PIR or microphonics (PDT) dual technology occupancy sensor. It pairs to other luminaires and wall switches through our mobile app, CLAIRITY'm, which allows for simple sensor adjustment. See page 4 fore more details on the Integrated Smart Sensor.
INSTALLATION - After existing fluorescent components are removed from the host housing, universal end brackets are secured in place with TEKSTM screws. The BLTR's integrated driver and light engine door assembly can then be hinged to the universal end brackets and will hang in place for completion of assembly plug-in wiring. Rotate the doorframe assembly closed and pivot the cam latches to secure the doorframe in place. LED boards include plug-in connectors for easy replacement or servicing. Suitable for damp location installations. Damp location not available with sensor versions.
LISTINGS - UL/CUL Listed for use in fluorescent light fixtures. Installing Relight assemblies per instructions will not impact existing fixture UL listing. Tested to LM80 standards. DesignLights Consortium ${ }^{\ominus}$ (DLC) Premium qualified product. Not all versions of this product may be DLC Premium qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.
WARRANTY - 5 -year limited warranty. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms and conditions.aspx
NOTE: Actual performance may differ as a result of end-user environment and application.
All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Fit Compatibility:

The BLT4R Relight Assembly was designed to upgrade recessed 1×4 fixtures, including most parabolic and lensed troffers from all major manufacturers. Dimensional requirements are below, but Lithonia Lighting recommends a trial installation prior to purchasing project quantities.

SIDE SECTION

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+Certified solution for nLight ${ }^{\circledR}$ control networks when ordered with drivers marked by a shaded background*
- This luminaire is part of an A+Certified solution for nLight control networks, providing advanced control functionality at the luminaire level, when selection includes driver and control options marked by a shaded background*

To learn more about $\mathrm{A}+$, visit www.acuitybrands.com/aplus.

*See ordering tree for details

A+Capable options indicated by this color background.								
ORDERING INFORMATION Lead times will vary depending on options selected. Consult with your sales representative. Example: BLT4R 30L ADP EZ1 LP835								
BLT4R								
Series	Air Function		Lumens ${ }^{2}$		Diffuser ADP Curved, linear prisms ADSM Curved, smooth SDP Square, linear prisms SDSM Square, smooth Diffusers w/ trim rings ADPT Curved, linear prisms ADSMT Curved, smooth SDPT Square, linear prisms SDSMT Square, smooth	Voltage	Driver	Color temperature
BLT4R 1X4 BLTR	(blank) A	Static (white end brackets for troffers) Air supply/ return or to maintain black reveal (black end brackets for parabolics) ${ }^{1}$	Standard efficiency (>100 LPW) 20L 2000 30L 3000 40L 4000 48L 4800 60L 6000	High efficiency ${ }^{3}$ (>130 LPW) 20LHE 2000 30LHE 3000 40LHE 4000 48LHE 4800 60LHE 6000		(blank) MVOLT 120 120 V 277 277 V 347 $347 \mathrm{~V}^{4}$	EZ1 eldoLED dims to 1\% (0-10 volt dimming $)$ GZ1 Dims to 1\% (0-10V dimming) GZ10 Dims to 10\% (0-10V dimming) ${ }^{5}$ SLD Step-level dimming EOHN On/Off (Non-dim)	LP830 $82 \mathrm{CRI}, 3000 \mathrm{~K}$ LP835 $82 \mathrm{CRI}, 3500 \mathrm{~K}$ LP840 $82 \mathrm{CRI}, 4000 \mathrm{~K}$ LP850 $82 \mathrm{CRI}, 5000 \mathrm{~K}$ LP930 $90 \mathrm{CRI}, 3000 \mathrm{~K}$ LP935 $90 \mathrm{CRI}, 3500 \mathrm{~K}$ LP940 $90 \mathrm{CRI}, 4000 \mathrm{~K}$ LP950 $90 \mathrm{CRI}, 5000 \mathrm{~K}$

Non-Configurable BLT								
Stock	Catalog Description*	UPC	Lumens	Wattage	LPW	Color Temperature	Voltage	Pallet Qty
Stock	BLT4R 40L ADP LP835	190887551013	3975	34	116	$3500 \mathrm{~K} / 82 \mathrm{CRI}$	120-277	30
	BLT4R 40L ADP LP840	190887551082	4062	34	119	$4000 \mathrm{~K} / 82 \mathrm{CRI}$	120-277	30

Accessories next page

* Dims to 10\%

Notes

Consult factory for airflow data.
2 Approximate lumen output.
All versions may not achieve $130+$ LPW. Refer to photometry on www.acuitybrands.com.
Not available with EL7L or EL14L battery packs.
5 GZ1, GZ10 not available with any Control or Sensor options.
6 Not available with N80, N8OEMG, N100, N100EMG, NLTAIR2, or occupancy control.
7 nLight EMG option requires a connection to existing nLight network. Power is provided from a separate N80 or N100 enabled fixture.
8 Must order with REST, RESTPDT, or RIO sensor. Only available with EZ1 driver.
9 Must specify diffuser with trim rings. See sensor options on page 4.
10 Requires N80, N80EMG, N100, or N100EMG.
11 Only available with EZ1 driver option. $0-10 \mathrm{v}$ dimming wires not accessible via access plate. Not available with Controls options.
12 Not available in 60 L or 60 LHE.
13 Not available in 48L, $60 \mathrm{~L}, 48 \mathrm{LHE}$, or 60 LHE .
14 Requires BSE labeling. Consult factory for options.
15 Must specify voltage, 120 or 277 with GLR \& GMF fusing.
16 Must specify EZ1 driver. FAO restricts use of external dimming controls. See chart on page 3 for additional details.

Multiple Diffuser Options

nLight ${ }^{\ominus}$ AIR Control Accessories:	
Order as separate catalog number. Visit www.acuitybrands.com/products/controls/nlightair.	
Wall switches	Model number
On/Off single pole	rPODB [color] G2
On/Off two pole	rPODB 2P [color] G2
On/Off \& raise/lower single pole	rPODB DX [color] G2
On/Off \& raise/lower two pole	rPODB 2P DX [color] G2
On/Off \& raise/lower single pole	rPODBZ DX WH G2

Application Guide

BLT4R - Typically used for lensed troffer installations. Assembly contains white end brackets and is supplied with white trim strips for use in closing gaps down fixture sides (installer's choice - not required).
*Note: This kit will fit in Lithonia's Avante non-air fixture.

BLT4R A - Typically used for parabolic installations with black reveal. Assembly contains black end brackets to match black reveal around host housing. Does not interfere with host housing air supply/return if present (along fixture sides)..

Notes
1 RCMS requires low voltage power from either RPP20 DS $24 V$ G2 or PS150.

BLT4R Volumetric Recessed Lighting 1'x4' Relight

PHOTOMETRICS

BLT4R 40L ADP LP835, 3975 delivered lumens, test no. LTL28918P441, tested in accordance to IESNA LM-79

180°	CP Summary			pf pc	Coefficients of Utilization									Zonal Lumen Summary			
+ $+10^{\circ}$		0°	90	pw	70\%	50\%	30\%	50\%	30\%	10\%		30\%	10\%	Zone	Lumens	\% Lamp	\% Fixture
200×1	0°	1366	1366	0	119	119	119	116	116	116	111	111	111	$0^{\circ}-30^{\circ}$	1045	26.3	26.3
H	5°	1340	1371	1	108	103	98	100	96	92	96	92	89	$0^{\circ}-40^{\circ}$	1698	42.7	42.7
-	15°	1278	1318	2	98	89	82	87	80	75	83	78	73	$0^{\circ}-60^{\circ}$	2993	75.3	75.3
$600 \sim$	25°	1156	1222	3	89	78	69	76	68	62	73	66	61	$0^{\circ}-90^{\circ}$	3977	100.0	100.0
$\rightarrow 1$	35°	991	1093	\sim^{4}	81	69	60	67	59	52	65	57	52	$90^{\circ}-180^{\circ}$	0	0.0	0.0
800	45°	801	945	¢	75	61	52	60	52	45	58	50	44	$0^{\circ}-180^{\circ}$	3977	100.0	100.0
1000 N	55°	604	783	${ }^{6}$	69	55	46	54	46	39	52	45	39				
	65°	410	614	7	64	50	41	49	41	35	48	40	34				
$1200 \sim 40^{\circ}$	75°	218	440	8	59	46	37	45	37	31	44	36	31				
-	85°	54	180	9	56	42	34	41	33	28	40	33	28				
$1400^{\circ} \quad 20^{\circ}$	90	6	3	10	52	39	31	38	30	25	37	30	25				
$\ldots-0^{\circ} \longrightarrow 90^{\circ}$																	

BLT4R 48L ADP LP835, 5148 delivered lumens, test no. LTL28918P445, tested in accordance to IESNA LM-79

Performance Data			
Lumen Package	Lumens	Input Watts	LPW
20L ADP LP830	2231	19	120
20L ADP LP835	2289	19	123
20L ADP LP840	2339	19	126
20L ADP LP850	2454	19	132
30L ADP LP830	3311	29	113
30L ADP LP835	3397	29	111
30L ADP LP840	3471	29	119
30L ADP LP850	3642	29	124
40L ADP LP830	3875	34	113
40L ADP LP835	3975	34	116
40L ADP LP840	4062	34	119
40L ADP LP850	4262	34	125
48L ADP LP830	5018	46	110
48L ADP LP835	5148	46	112
48L ADP LP840	5261	46	115
48L ADP LP850	5520	46	121
60L ADP LP830	5969	53	112
60L ADP LP835	6124	53	115
60L ADP LP840	6258	53	117
60L ADP LP850	6566	53	123

HE Performance Data			
Lumen Package	Lumens	Input Watts	LPW
20LHE ADP LP835	1920	15	132
30LHE ADP LP835	3577	26	137
40LHE ADPT LP835	4195	32	132
48LHE ADP LP830	4701	36	131
48LHE ADP LP835	4822	36	134
48LHE ADP LP840	4929	36	137
48LHE ADP LP850	5171	36	144
60LHE ADP LP830	5400	42	129
60LHE ADP LP835	5540	42	132
60LHE ADP LP840	5662	42	135
60LHE ADP LP850	5941	42	141
30LHE ADP LP830	3286	25	131
30LHE ADP LP835	3371	25	135
30LHE ADP LP840	3445	25	138
30LHE ADP LP850	3614	25	145
40LHE ADP LP830	4062	32	127
40LHE ADP LP835	4167	32	130
40LHE ADP LP840	4259	32	133
40LHE ADP LP850	4469	32	140

- LITHONIA LIGHTING

FEATURES \& SPECIFICATIONS

INTENDED USE - LED downlight for retrofit of installed commercial mounting frames with incandescent, compact fluorescent (CFL), or high intensity discharge (HID) sources.
CONSTRUCTION — Innovative housing design that simultaneously retains and centers the fixture in the existing mounting frame.
See table for compatible ceiling opening and thickness ranges.
All installation can be performed from the room side without removing the existing mounting frame.
OPTICS — LEDs are binned to a 3 -step SDCM; 80 CRI minimum. 90 CRI optional.
LED light source concealed with diffusing optical lens.
General illumination lighting with $1.0 \mathrm{~S} / \mathrm{MH}$ and 55° cutoff to source and source image.
Multiple lumen packages to replace the installed base of CFL or HID sources with energy savings of 50% 80\%. See Lumen Equivalency Chart.
Self-flanged anodized reflectors in specular, semi-specular, or matte diffuse finishes. Also available in white and black painted reflectors.
ELECTRICAL — Multi-volt (120-277V, 50/60Hz) eldoLED 0-10V dimming drivers available in 10% or 1% minimum dimming levels.
70% lumen maintenance at 60,000 hours.
LISTINGS - Certified to US and Canadian safety standards. Wet location standard (covered ceiling). IP55 rated. Some configurations are Energy Star certified, please visit www.energystar.gov for specific products
WARRANTY - 5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at:
www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Catalog Number
Notes
Type

A + Capable options indicated
by this color background.

Finish	Voltage	Driver	Options	
LSS Semi-specular LD Matte diffuse LS Specular	MVOLT Multi-volt 120 120 V 277 277 V	GZ10 $0-10 \mathrm{~V}$ driver dims to 10\% GZ1 $0-10 \mathrm{~V}$ driver dims to 1\% EZ10 eldoLED 10\% 0-10V EZ1 eldoLED 1\% 0-10V	$S F^{3} \quad$ Single Fuse TRW ${ }^{4}$ White painted flange TRBL ${ }^{4} \quad$ Black painted flange	LH 5 Lower overall height NLTAIR2 6,7,8,9 nLight ${ }^{\oplus}$ Air enabled NLTAIRER2 6,7,8 nLight ${ }^{\oplus}$ AIR Dimming Pack Wireless Controls. Controls fixtures on emergency circuit NLTAIREM2 ${ }^{6,7,8}$ nLight ${ }^{\oplus}$ AIR Dimming Pack Wireless Controls. Controls fixtures on emergency circuit with battery pack options. 90CRI High CRI (90+) available with 5000Im and below

Accessories: Order as separate catalog number.	
EAC ISSM 375	Compact interruptible emergency $A C$ power system
EAC ISSM 125	Compact interruptible emergency AC power system
RK2 SDT 347/120 75VA U	347 V step-down transformer mounted in box installed by others up to 50001m
RK2 SDT 347277120 395VA AD U	347 V step down transformer mounted in box installed by others 6000-12,0001m
LDN_RVRGIN	Rough-in frame. Fill in blank with appropriate aperture size (Example: LDN6RVRGIN). Refer to pg. 6
nPP16 DEFP ${ }^{3}$	nLight network power/relay pack with 0-10V dimming for non-eldoLED drivers (GZ10, GZ1).
nPP16 D ER EFP ${ }^{3}$	nLight network power/relay pack with 0-10V dimming for non-eldoLED drivers (GZ10, GZ1). ER controls fixtures on emergency circuit.
NPS80EZ	
NPS80EZER	nLight ${ }^{\text {d }}$ dimming pack controls $0-10 \mathrm{~V}$ eldoLED drivers (EZ10, EZ1). ER controls fixtures on emergency

Notes

1 Refer to Available Lumen Package Table for lumen range available per aperture size. 8 "-10" trims utilize different trims based on lumen package selected. 5000 Im and below supplied with low lumen ("LL") trim; 6000 Im and above with high lumen ("HL") trim.
2 Not available with finishes.
3 Must specify voltage 120 V or 277 V .
4 Available with clear (AR) trim color only.
5 Select LH option for lower overall height. Consult table on Page 2 and dimensional drawings.
6 Not available with ELV, CP, NPS80EZ, NPS80EZER, NPP16D, NPP16DER or N80 options.
7 NLTAIR2, NLTAIRER2 and NLTAIREM2 not recommended for metal ceiling installations.
8 NLTAIR2, NLTAIRER2 and NLTAIREM2 refer to nLight AIR Max Lumens Table.
9 When combined with EZ1 or EZ10 drivers, can be used as a normal power sensing device for nLight AIR devices and luminaires with $E M$ options

Dimensions*										
Series	Standard Height Max Lumens	Standard Height	LH Height Max Lumens	LH Height	Min Ceiling Opening	Ceiling Thickness at Min Opening	Max Ceiling Opening	Ceiling Thickness at Max Opening	Reflector Aperture	Reflector Flange Diameter
LDN4RV	2000LM	7-1/4"	N/A	N/A	4-7/8"	1/2"-1-1/2"	5-1/8"	1/2"-1-1/2"	4-5/8"	5-3/8"
LDN6RV	3000LM	8-1/4"	1500LM	6-1/2"	$6{ }^{\prime \prime}$	1/2" - 2"	6-7/8"	1"-2"	5-1/4"	7-3/16"
LDN7RV	5000LM	8-7/8"	N/A	N/A	6-7/8"	1/2" - 2"	7-3/4"	1"-2"	6-1/4"	8-1/16"
LDN8RV	12,000LM	$1311 / 16^{\prime \prime}$	5000LM	8-5/8" +	7-7/8"	1/2" - 2"	8-3/4"	3/4"-2"	7"	9-3/16"
LDN9RV	12,000LM	1311/16"	4000LM	9-1/2"	8-7/8"	1/2"-2"	9-7/8"	3/4"-2"	8-1/4"	11-7/16"
LDN10RV	12,000LM	1311/16"	4000LM	9-1/2"	9-3/4"	3/4"-2"	10-3/4"	1"-2"	8-1/4"	11-7/16"
*All dimensions are inches + LH height 9-7/8" for 5000LM +Max ceiling thickness with NLTAIR2 option is 1.5"										

NLIGHT AIR MAX LUMENS TABLE		
	Without LH Option	With LH Option
LDN4RV	2000 lm	N/A
LDN6RV	30001 m	15001 m
LDN7RV	5000 lm	N/A
LDN8RV	50001 m	5000 lm
LDN9RV	5000 lm	4000 lm
LDN10RV	5000 lm	4000 lm

$\left.\begin{array}{cccc}\hline \text { Distribution Curve } & \text { Distribution Data } & \text { Output Data } & \text { Coefficient of Utilization }\end{array} \begin{array}{c}\text { Illuminance Data at 30" Above Floor for } \\ \text { a Single Luminaire }\end{array}\right]$

LDN4RV 35/10 LR4AR LS, input watts: 10.58 , delivered lumens: 1085.2, LM $/ W=102.57$, Spacing criterion at $0=1.04$. ISF 30712 P544

LDN7RV 35/15 LR7AR LS, input watts: 17.52, delivered lumens: 1521.9, LM/W=86.86, Spacing criterion at $0=0.96$. ISF 33918 P308

	Ave	Lumens	Zone	Lumens	\% Lamp
0	2693		$0^{\circ}-30^{\circ}$	2092.2	69.0
5	2782	274	$0^{\circ}-40^{\circ}$	2751.0	90.7
15	2984	827	$0^{\circ}-60^{\circ}$	3030.8	99.9
25	2212	991	$0^{\circ}-90^{\circ}$	3033.9	100.0
35	1014	659	$90^{\circ}-120^{\circ}$	0.0	0.0
45	339	268	$90^{\circ}-130^{\circ}$	0.0	0.0
55	4	12	$90^{\circ}-150^{\circ}$	0.0	0.0
65	2	2	$90^{\circ}-180^{\circ}$	0.0	0.0
75	1	1	$0^{\circ}-180^{\circ}$	3033.9	*100.0
85	0	0	*Efficiency		
90	0				

pf	20\%								
pc	80\%			70\%			50\%		
pw	50\% 30\% 10\%			50\% 30\% 10\%			50\% 30\% 10\%		
0	119	119	119	116	116	116	111	111	111
1	111	108	106	109	106	104	104	103	101
2	103	99	95	101	97	94	98	95	92
3	96	91	87	94	90	86	92	88	85
4	89	84	79	88	83	79	86	81	78
5	83	77	73	82	77	73	81	76	72
6	78	72	68	77	72	67	76	71	67
7	73	67	63	73	67	63	71	66	62
8	69	63	59	68	62	58	67	62	58
9	65	59	55	64	59	55	63	58	54
10	61	55	51	61	55	51	60	55	51

		50% beam - 54.5°	10% beam - 82.2°		
Inital FC					
Mounting	Center				
Height	Beam	Diameter	FC	Diameter	FC
8.0	89.0	5.7	44.5	9.6	8.9
10.0	47.9	7.7	23.9	13.1	4.8
12.0	29.8	9.8	14.9	16.6	3.0
14.0	20.4	11.8	10.2	20.1	2.0
16.0	14.8	13.9	7.4	23.6	1.5

LDN8RV 35/30 LR8AR LS, input watts: 34.75, delivered lumens: 2641, LM/W=67.36, Spacing criterion at $0=1.18$. ISF 192189P104

	Ave	Lumens	Zone	Lumens	\% Lamp
0	2111		$0^{\circ}-30^{\circ}$	1965.5	74.4
5	2223	221	$0^{\circ}-40^{\circ}$	2555.6	96.8
15	2701	738	$0^{\circ}-60^{\circ}$	2637.1	99.9
25	2208	1006	$0^{\circ}-90^{\circ}$	2640.7	100.0
35	927	590	$90^{\circ}-120^{\circ}$	0.0	0.0
45	58	67	$90^{\circ}-130^{\circ}$	0.0	0.0
55	17	15	$90^{\circ}-150^{\circ}$	0.0	0.0
65	2	2	$90^{\circ}-180^{\circ}$	0.3	0.0
75	1	1	$0^{\circ}-180^{\circ}$	2641.0	*100.0
85	0	0	*Efficiency		
90	0				

pf pc pw
0
1
2
3
4
5
6
7
8
9
10

80%			
50%	30%	10%	
119	119	119	
111	108	106	
103	99	96	
96	92	88	
90	85	81	
84	79	74	
79	73	69	
74	69	64	
70	64	60	
66	60	56	
62	57	53	

| |
| :---: | Z

70%		
0%	30%	10%
116	116	116
109	107	105
102	98	95
95	91	87
89	84	80
84	78	74
78	73	69
74	68	64
70	64	60
66	60	56
62	56	53

50\% | pc | 80% | | |
| :---: | :---: | :---: | :---: |
| pw | 50% | 30% | 10% |
| 0 | 119 | 119 | 119 |
| 1 | 111 | 108 | 106 |
| 2 | 103 | 99 | 96 |
| 3 | 96 | 92 | 88 |
| 4 | 90 | 85 | 81 |
| 5 | 84 | 79 | 74 |
| 6 | 79 | 73 | 69 |
| 7 | 74 | 69 | 64 |
| 8 | 70 | 64 | 60 |
| 9 | 66 | 60 | 56 |
| 10 | 62 | 57 | 53 |

$\begin{array}{r}60 \\ 56 \\ 56 \\ \hline\end{array}$ 50%
111
105
98
92
87
82
77
73
68

65	50%	30%	10%
111	111	111	
105	103	101	
98	95	93	
92	89	86	
87	83	79	
82	77	73	
77	72	68	
73	68	64	
68	63	60	
65	60	56	
61	56	53	

LUMEN OUTPUT MULTIPLIERS - FINISH

	Clear (AR)	White (WR)	Black (BR)
Specular (LS)	1.0	N/A	N/A
Semi-specular (LSS)	0.950	N/A	N/A
Matte diffuse (LD)	0.85	N/A	N/A
Painted	N/A	0.87	0.73

LDN4RV

|. LITHONIA LIGHTING

DIGITAL NAVIGATION

Ordering Tree nLight Platform Sensor Switch JOT Photometrics Performance Data Drawings

FEATURES \& SPECIFICATIONS

INTENDED USE - The EPANL Series LED Edge-Lit Flat Panel provides a fully luminous appearance across the face of the lens. This provides a soft, glare-free solution that is visually comfortable within the space. Suitable for many lighting applications including schools, offices and other commercial spaces, retail, convenience stores, hospitals and healthcare facilities. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. Click here for Acrylic-Polycarbonate Compatibility table for suitable uses.
CONSTRUCTION — Built to last with an aluminum frame for strength and durability, the seamless frame prevents light leak in the corners. The PMMA light guide plate and lens resists yellowing and transmits light with superior efficacy. The satin white lens provides excellent shielding and fully luminous appearance. EPANL's low-profile design provides increased installation flexibility especially in restricted plenum spaces. The back plate includes integral T-bar clips for installation into 15/16" or 9/16" T-grid ceilings. Fixture may be recessed, suspended, surface box mounted or mounted in a hard-ceiling see accessories section for more information. Fixture may be mounted and wired in continuous rows.
Integrated Sensor (nLight Wired Networking): This sensor is nLight-enabled, meaning it has the ability to communicate over an nLight network. When wired, using CAT-5 cabling, with other nLight-enabled sensors, power packs, or WallPods, an nLight control zone is created. Once linked to a Gateway, directly or via a Bridge, the zone becomes capable of remote status monitoring and control via SensorView software.

Integrated Smart Sensor (nLight Air Wireless Platform): The RES7 sensor is nLight AIR enabled, meaning it has the ability to communicate over the wireless nLight control platform. It is available with an automatic dimming photocell, and either a digital PIR or a microphonics (PDT) dual technology occupancy sensor. It pairs to other luminaires and wall switches through our mobile app, CLAIRITY+, which allows for simple sensor adjustment.
Integrated Wireless Sensor (single room control): Sensor Switch VERTEX JOT or JOTVTX15 luminaire-embedded occupancy and ambient light sensor allows the luminaire to power off when the space is unoccupied or when enough ambient light is entering the space. See page 7 for more details on the integrated wireless sensor.
ELECTRICAL — Long-life LEDs, coupled with a high-efficiency driver, provide superior illumination for extended service life. See page 3 for detailed lumen maintenance information. 0-10V dimming driver, dims to 1% or 10% and contains non-isolated dimming leads.
LISTINGS - CSA Certified to meet US and Canadian standards. Tested to meet UL1958. Intended for indoor use only. Product is not to be stored in non-climate controlled spaces. DesignLights Consortium ${ }^{\circledR}$ (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLCQualified Products List at www.designlights.org/ QPL to confirm which versions are qualified. Damp location listed. IC rated. IP5X rated. Long nomenclature, configurable product is rated for NSF/ANSI Standard 2 -Light Fixture for Splash Zone and Non Food Zone. Tested in accordance with ISO 14644-1; suitable for ISO Class 5-9 positive and negative pressure clean rooms. Suitable for ambient temperatures from $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$ to $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$.
WARRANTY - 5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/ terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Catalog Number

 Number

 Number}Notes

Type
EPANL LED
$1^{\prime} \times 4^{\prime}, 2^{\prime} \times 22^{\prime}$, and $2^{\prime} \times 44^{\prime}$

Embed nLight controls today. Prepare for tomorrow.

S4+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands'specification for chromatic consistency
- This luminaire is part of an $\mathrm{A}+$ Certified solution for nLight ${ }^{\ominus}$ control networks when ordered with drivers marked by a shaded background*
- This luminaire is part of an A+Certified solution for nLight control networks, providing advanced control functionality at the luminaire level, when selection includes driver and control options marked by a shaded background*

To learn more about $\mathrm{A}+$, visit www.acuitybrands.com/aplus.
*See ordering tree for details

EPANL LED Flat Panel

Options			
GLR	Fast-blowing fuse \ddagger	PWS1856LV	6 ' pre-wire, 3/8" diameter, 18 gauge, 1 circuit w/low voltage wires \ddagger
GMF	Slow-blowing fuse \ddagger	CP	Chicago plenum \ddagger
PWS1836	6 ' pre-wire, $3 / 8$ " diameter, 18 gauge, 1 circuit		Narrow Pallet
PWS1846	6 ' pre-wire, $3 / 8$ " diameter, 18 gauge, 2 circuit	BDP	Factory Installed Ballast Disconnect Plug
PWS1846 PWSLV	Two cables: one 6 ' pre-wire, $3 / 8$ " diameter, 18 gauge, 2 circuits; one 6 ' pre-wire, $3 / 8$ " diameter, 18 gauge \ddagger		RELOC ${ }^{-}$-ready luminaire \ddagger

NOTE: \ddagger indicates option value has ordering restrictions. Please reference the Option Value Ordering Restictions chart on the next page. Options are sorted alphanumerically.

EPANL LED Flat Panel

DIMENSIONS (continued)

2X4 Configurations

LITHONIA LIGHTING

FEATURES \& SPECIFICATIONS

INTENDED USE - Wet location, recessed LED troffer for general illumination of demanding environments subject to dust and moisture. Typical applications include shower areas, bathrooms, recreational facilities and canopies.
Certain airborne contaminants may adversely affect the functioning of LEDs and other electronic components, depending on various factors such as concentrations of the contaminants, ventilation, and temperature at the end-user location. Click here for a list of substances that may not be suitable for interaction with LED s and other electronic components. CONSTRUCTION —Housing is made from 20-gauge cold rolled steel. Door frame is. 060 painted aluminum and lens is diffused acrylic. Gasket is closed cell neoprene.
Finish: All CRS (cold rolled steel) and aluminum parts are finished with electrostatically deposited, thermally set, polyester powder paint after fabrication. Door frame finish available in black, white and silver colors. Enclosure finish available in white, Antimicrobial white and super-durable white.
OPTICS - Long-life LEDs, coupled with high-efficiency drivers, provide extended service life. Lumen maintenance of $\mathrm{L} 80 / 60,000$ hours, $\mathrm{L} 70>100,000$ hours.
ELECTRICAL - Thermally protected, resetting, Class P, HPF, non-PCB, UL listed, CSA certified driver is standard.
LED driver delivers dimming from a 0-10V control signal. Dims to 1% standard.
Luminaire Surge Protection Level: Designed to withstand up to 6kV/3kA per ANSI C82.77-5-2015.
INSTALLATION — Lay-in grid or in-ceiling sheet rock installation using swing-arms with range from 1 " to 2 " grid height. See drawings for other critical dimensions. Swing-arms are not intended to secure fixture without additional support. Line voltage supply wiring entrance opening is $7 / 8^{\prime \prime}$.
LISTINGS — CSA certified to meet U.S. and Canadian standards (UL1598 and UL8750) or NOM Certified. IC rated. Wet location listed. FPA option: NSF Splash Zone 2 (overlap door only).
BUY AMERICAN — Product with the BAA option is assembled in the USA and meets the BuyAmerica(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.
For use in ambient temperatures ranging from $-4^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$ to $104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$ with the exception of $10000 \mathrm{LM}(1 \times 4) 12000 \mathrm{LM}(2 X 2)$ and $24000 \mathrm{LM}(2 X 4)$. These lumen packages are for use in ambient temperatures ranging from $-4^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right)$ to $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$.
DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.
WARRANTY - 5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application.
All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Catalog Number
Notes
Type

LED Recessed Wet Location Troffer

\$4+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands'specification for chromatic consistency
- This luminaire is part of an $\mathrm{A}+$ Certified solution for nLight ${ }^{\ominus}$ control networks marked by a shaded background*

To learn more about A+, visit www.acuitybrands.com/aplus.
*See ordering tree for details

Door frame		Diffuser type	Voltage	Driver	Color temperature	Color rendering index
OAW OAN OAM IAW IAN IAM	Overlapping aluminum, white Overlapping aluminum, silver Overlapping aluminum, black Inset aluminum, white Inset aluminum, silver Inset aluminum, black	AFL Acryli, frosted (.080" Thick)	MVOLt $120-277 \mathrm{~V}$ 120 120 V 277 277 V 347 $347 \mathrm{~V} \ddagger$	EZ1 eldoLED 0-10V ECOdrive. Linear dimming to 1% min. GZ1 0-10V dimming \ddagger	30 K 3000 K 35 K 3500 K 40 K 4000 K 50 K 5000 K	$\begin{array}{ll} 80 \mathrm{CRI} & 80 \mathrm{CRI} \\ 90 \mathrm{CRI} & 90 \mathrm{CRI} \end{array}$

Options				Finish \ddagger	
BGTD	Generator tranfser device \ddagger	Individual Controls: \ddagger		WH DWAM DWHXD	White Antimicrobial, white Super durable, white
PS1050	Emergency battery pack, 10W, CA Title 20 noncompliant \ddagger	MSEGNWL MSE62L3VWL MSE6NWL DSCNWL	Embedded high mount 360° motion sensor, wet location, On/Off operation Embedded high mount 360° motion sensor, wet location, High/Low operation (2-level)		
E10WLCP	EM Self-diagnostics battery pack, 10W, Constant Power Certified in CA Title 20 MAEDBS \ddagger				
			Embedded high mount 360° motion sensor, wet location, On/Off operation from motion sensing, Override Off due to daylight		
SF	Single fusing	MSE10NWL MSE102L3VWL	Embedded low mount 360° motion sensor, wet location, On/Off operation Embedded low mount 360° motion sensor, wet location, High/Low operation (2-level)		
FPA	Food processing area \ddagger				
ST3	Constructed with US steel				
BAA	Buy America(n) Act Compliant	MSE10NWL DSCNWL	Embedded low mount 360° motion sensor, wet location, On/Off operation from motion sensing, Override Off due to daylight		
		nLight: \ddagger			
		nPS80EZ	nLight ${ }^{\text {d }}$ dimming pack controls, $0-10 \mathrm{~V}$ eldoLED driver		

CONFIGURATIONS

Lumens	$1^{\prime} X 4^{\prime}$	$2^{\prime} \mathrm{X} 2^{\prime}$	$2^{\prime} \mathrm{X} 4^{\prime}$
$3,000 \mathrm{LM}$	X	X	X
$5,000 \mathrm{LM}$	X	X	X
$7,000 \mathrm{LM}$	X	X	X
$10,000 \mathrm{LM}$	X	X	X
$12,000 \mathrm{LM}$		X	
$15,000 \mathrm{LM}$			X
$18,000 \mathrm{LM}$			X
$24,000 \mathrm{LM}$			X

OPERATIONAL DATA

$\begin{aligned} & \text { WRTL L48 } \\ & \left(1^{\prime} \times 4\right. \text { 4') } \end{aligned}$	Lumen Packages	Wattage	Delivered Lumens (AFL)
30K 80CRI	3000LM	26.8	3115
	5000LM	44.0	5134
	7000LM	58.6	6598
	10000LM	87.6	9962
35K 80CRI	3000LM	26.8	3184
	5000LM	44.0	5248
	7000LM	58.6	6745
	10000LM	87.6	10184
40K 80CRI	3000LM	26.8	3234
	5000LM	44.0	5330
	7000LM	58.6	6850
	10000LM	87.6	10343
50K 80CRI	3000LM	26.8	3353
	5000LM	44.0	5526
	7000LM	58.6	7102
	10000LM	87.6	10724

$\begin{gathered} \text { 2WRTL L24 } \\ \left(2^{\prime} \times 2^{\prime}\right) \end{gathered}$	Lumen Packages	Wattage	Delivered Lumens (AFL)
30K 80CRI	3000LM	26.6	2848
	5000LM	41.8	4526
	7000LM	60.6	6814
	10000LM	87.6	9653
	12000LM	109.6	11739
35K 80CRI	3000LM	26.6	2912
	5000LM	41.8	4627
	7000LM	60.6	6966
	10000LM	87.6	9868
	12000LM	109.6	12001
40K 80CRI	3000LM	26.6	2957
	5000LM	41.8	4699
	7000LM	60.6	7074
	10000LM	87.6	10022
	12000LM	109.6	12188
50K 80CRI	3000LM	26.6	3066
	5000LM	41.8	4872
	7000LM	60.6	7334
	10000LM	87.6	10391
	12000LM	109.6	12637

$\begin{gathered} \text { 2WRTL L48 } \\ \left(2^{\prime} \times 4^{\prime}\right) \end{gathered}$	Lumen Packages	Wattage	Delivered Lumens (AFL)
30K 80CRI	3000LM	21.5	2627
	5000LM	38.7	4632
	7000LM	58.5	6807
	10000LM	80.0	9377
	15000LM	121.1	13871
	18000LM	148.8	16780
	24000LM	204.1	22293
35 K 80 CRI	3000LM	21.5	2685
	5000LM	38.7	4735
	7000LM	58.5	6959
	10000LM	80.0	9586
	15000LM	121.1	14180
	18000LM	148.8	17154
	24000LM	204.1	22790
40K 80CRI	3000LM	21.5	2727
	5000LM	38.7	4809
	7000LM	58.5	7067
	10000LM	80.0	9735
	15000LM	121.1	14401
	18000LM	148.8	17421
	24000LM	204.1	23145
50K 80CRI	3000LM	21.5	2827
	5000LM	38.7	4986
	7000LM	58.5	7327
	10000LM	80.0	10093
	15000LM	121.1	14931
	18000LM	148.8	18062
	24000LM	204.1	23997

FEATURES \& SPECIFICATIONS

INTENDED USE - Typical applications include corridors, lobbies, conference rooms and private offices.
CONSTRUCTION - Galvanized steel mounting/plaster frame; galvanized steel junction box with bottom-hinged access covers and spring latches. Reflectors are retained by torsion springs.
Vertically adjustable mounting brackets with commercial bar hangers provide $3-3 / 4$ " total adjustment.
Two combination $1 / 2 "-3 / 4$ " and four $1 / 2$ " knockouts for straight-through conduit runs. Capacity: 8 (4 in, 4 out). No. 12 AWG conductors, rated for $90^{\circ} \mathrm{C}$.
Accommodates 12"-24" joist spacing.
Passive cooling thermal management for $25^{\circ} \mathrm{C}$ standard; high ambient $\left(40^{\circ} \mathrm{C}\right)$ option available. Light engine and drivers are accessible from above or below ceiling.
Max ceiling thickness 1-1/2".
OPTICS - LED s are binned to a 3 -step SDCM; 80 CRI minimum. 90 CRI optional.
LED light source concealed with diffusing optical lens.
General illumination lighting with $1.0 \mathrm{~S} / \mathrm{MH}$ and 55° cutoff to source and source image.
Self-flanged anodized reflectors in specular, semi-specular, or matte diffuse finishes. Also available in white and black painted reflectors.
ELECTRICAL — Multi-volt ($120-277 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$) $0-10 \mathrm{~V}$ dimming drivers mounted to junction box, 10% or 1% minimum dimming level available.
$0-10 \mathrm{~V}$ dimming fixture requires two (2) additional low-voltage wires to be pulled.
70% lumen maintenance at 60,000 hours.
LISTINGS - Certified to US and Canadian safety standards. Wet location standard (covered ceiling). IP55 rated. ENERGY STAR ${ }^{\oplus}$ certified product.
BUY AMERICAN - Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.
WARRANTY - 5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms
located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application.
All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.
Specifications subject to change without notice.

Catalog Number
Notes
Type

6" Open and WallWash LED Non-IC New Construction Downlight

A+Capable options indicated
by this color background.

Lead times will vary depending on options selected. Consult with your sales representative
Example: LDN6 35/15 LO6AR LSS MVOLT EZ10

LDN6												
Series	Color temperature		Lumens ${ }^{1}$				Aperture/Trim Color				Finish	Voltage
LDN6 6"round	$27 /$ $30 /$ $35 /$ $40 /$ $50 /$	2700K 3000K 3500K 4000K 5000K	$\begin{aligned} & 05 \\ & 07 \\ & 10 \\ & 15 \\ & 20 \end{aligned}$	500 lumens 750 lumens 1000 lumens 1500 lumens 2000 lumens		2500 lumens 3000 lumens 4000 lumens 5000 lumens		Downlight Wallwash		Clear White Black	LSS Semi-specular LD Matte diffuse LS Specular	MVOLT Multi-volt 120 120 V 277 277 V 347^{3} 347 V

Notes

1 Overall height varies based on Iumen package; refer to dimensional chart on page 3.
2 Not available with finishes.
3 Not available with emergency options.
4 Must specify voltage 120 V or 277 V .
5 Available with clear (AR) reflector only.
6 12.5" of plenum depth or top access required for battery pack maintenance.
7 Specify voltage. ER for use with generator supply EM power. Will require an emergency hot feed and normal hot feed.
8 Fixture begins at 80% light level. Must be specified with NPS80EZ or NPS80EZ ER. Only available with EZ10 and EZ1 drivers.

9 Not available with CP, NPS80EZ, NPS80EZER, NPP16D, NPP16DER or N80 options.
10 NLTAIR2, NLTAIRER2 and NLTAIREM2 not recommended for metal ceiling installations.
11 Fixture height is $6.5^{\prime \prime}$ for all lumen packages with HAO .
12 Must specify voltage for 30001 m and above. 5000 lm with marked spacing $24 \mathrm{~L} \times 24 \mathrm{~W} \times 14 \mathrm{H}$. Not available with emergency battery pack option.
13 Must specify D10 or D1 driver. Not available with nLight options. Not available with CP. Not recommended for metal ceiling installation. Not for use with emergency backup power systems other than battery packs.
14 When combined with EZ1 or EZ10 drivers, can be used as a normal power sensing device for nLight AIR devices and lumiaires with EM options.

Distribution Curve	Distribution Data	Output Data
Coefficient of Utilization	Illuminance Data at 30" Above Floor for a Single Luminaire	

LDN6 35/10 L06AR, input watts: 10.44 , delivered lumens: $987.10, L M / W=94.54$, spacing criterion at $0=1.02$, test no. ISF 30716 P262.

	Ave	Lumens
0	876	
5	905	89
15	971	269
25	720	322
35	330	214
45	110	87
55	1	4
65	1	1
75	0	0
85	0	0
90	0	

Zone	Lumens	$\%$ Lamp	
$0^{\circ}-30^{\circ}$	680.7	69.0	
$0^{\circ}-40^{\circ}$	895.0	90.7	
$0^{\circ}-60^{\circ}$	986.0	99.9	
$0^{\circ}-90^{\circ}$	987.0	100.0	
$90^{\circ}-120^{\circ}$	0.0	0.0	
$90^{\circ}-130^{\circ}$	0.0	0.0	
$90^{\circ}-150^{\circ}$	0.0	0.0	
$90^{\circ}-180^{\circ}$	0.0	0.0	
$0^{\circ}-180^{\circ}$	987.0	$* 100.0$	
*Efficiency			

pf	
pc	
pw	5
0	11
1	111
2	
3	
4	
5	
6	
7	
8	
9	
10	

20\%								
$\begin{gathered} 80 \% \\ 50 \% 30 \% 10 \% \end{gathered}$				70\%			50\%	
			50\% 30\% 10\%			50\% 30\% 10\%		
119	119	119	116	116	116	111	111	111
111	108	106	109	106	104	104	103	101
103	99	95	101	97	94	98	95	92
96	91	87	94	90	86	92	88	85
89	84	79	88	83	79	86	81	78
83	77	73	82	77	73	81	76	72
78	72	68	77	72	67	76	71	67
73	67	63	73	67	63	71	66	62
69	63	59	68	62	58	67	62	58
65	59	55	64	59	55	63	58	54
61	55	51	61	55	51	60	55	51

	50% beam - 54.5°				
10% beam - 82.2°					
Inital FC					
Mounting	Center				
Height	Beam	Diameter	FC	Diameter	FC
8.0	29.0	5.7	14.5	9.6	2.9
10.0	15.6	7.7	7.8	13.1	1.6
12.0	9.7	9.8	4.9	16.6	1.0
14.0	6.6	11.8	3.3	20.1	0.7
16.0	4.8	13.9	2.4	23.6	0.5

LDN6 35/15 L06AR, input watts: 17.52 , delivered lumens: 1572.9, LM/W $=89.77$, spacing criterion at $0=1.02$, test no. ISF 30716 P265.

	Ave	Lumens	Zone	Lumens	\% Lamp
0	1396		$0^{\circ}-30^{\circ}$	1084.6	69.0
5	1442	142	$0^{\circ}-40^{\circ}$	1426.2	90.7
15	1547	429	$0^{\circ}-60^{\circ}$	1571.3	99.9
25	1147	514	$0^{\circ}-90^{\circ}$	1572.9	100.0
35	526	342	$90^{\circ}-120^{\circ}$	0.0	0.0
45	176	139	$90^{\circ}-130^{\circ}$	0.0	0.0
55	2	6	$90^{\circ}-150^{\circ}$	0.0	0.0
65	1	1	$90^{\circ}-180^{\circ}$	0.0	0.0
75	1	1	$0^{\circ}-180^{\circ}$	1572.9	*100.0
85	0	0	*Efficiency		
90	0				

pf	20\%								
pc	80\%			70\%			50\%		
pw	50\% 30\% 10\%			50\% 30\% 10\%			50\% 30\% 10\%		
0	119	119	119	116	116	116	111	111	111
1	111	108	106	109	106	104	104	103	101
2	103	99	95	101	97	94	98	95	92
3	96	91	87	94	90	86	92	88	85
4	89	84	79	88	83	79	86	81	78
5	83	77	73	82	77	73	81	76	72
6	78	72	68	77	72	67	76	71	67
7	73	67	63	73	67	63	71	66	62
8	69	63	59	68	62	58	67	62	58
9	65	59	55	64	59	55	63	58	54
10	61	55	51	61	55	51	60	55	51

	50% beam - 54.5°				
10% beam - 82.2°					
Inital FC Center					
Mounting	Beam	Diameter	FC	Diameter	FC
8.0	46.2	5.7	23.1	9.6	4.6
10.0	24.8	7.7	12.4	13.1	2.5
12.0	15.5	9.8	7.7	16.6	1.5
14.0	10.6	11.8	5.3	20.1	1.1
16.0	7.7	13.9	3.8	23.6	0.8

LDN6 35/30 L06AR, input watts: 34.75 , delivered lumens: 3138.5, LM/W $=90.31$, spacing criterion at $0=1.02$, test no. ISF $30716 P 274$.

	Ave	Lumens	Zone	Lumens	\% Lamp
0	2786		$0^{\circ}-30^{\circ}$	2164.3	69.0
5	2877	284	$0^{\circ}-40^{\circ}$	2845.9	90.7
15	3087	855	$0^{\circ}-60^{\circ}$	3135.3	99.9
25	2289	1025	$0^{\circ}-90^{\circ}$	3138.5	100.0
35	1049	682	$90^{\circ}-120^{\circ}$	0.0	0.0
45	350	277	$90^{\circ}-130^{\circ}$	0.0	0.0
55	5	12	$90^{\circ}-150^{\circ}$	0.0	0.0
65	2	2	$90^{\circ}-180^{\circ}$	0.0	0.0
75	1	1	$0^{\circ}-180^{\circ}$	3138.5	*100.0
85	0	0		Efficiency	
90	0				

pf
pc
$p w$
0
1
2
3
4
5
6
7
8
9
10

20\%								
$\begin{gathered} 80 \% \\ 50 \% 30 \% 10 \% \\ \hline \end{gathered}$			50\% 30\% 10\%			$\begin{gathered} 50 \% \\ 50 \% 30 \% ~ 10 \% \end{gathered}$		
119	119	119	116	116	116	111	111	111
111	108	106	109	106	104	104	103	101
103	99	95	101	97	94	98	95	92
96	91	87	94	90	86	92	88	85
89	84	79	88	83	79	86	81	78
83	77	73	82	77	73	81	76	72
78	72	68	77	72	67	76	71	67
73	67	63	73	67	63	71	66	62
69	63	59	68	62	58	67	62	58
65	59	55	64	59	55	63	58	54
61	55	51	61	55	51	60	55	51

Mounting	Inital FC	$\begin{gathered} 50 \% \text { beam - } \\ 54.5^{\circ} \end{gathered}$		$\begin{gathered} 10 \% \text { beam - } \\ 82.2^{\circ} \end{gathered}$	
	Center				
	Beam	Diameter	FC	Diameter	FC
8.0	92.1	5.7	46.1	9.6	9.2
10.0	49.5	7.7	24.8	13.1	5.0
12.0	30.9	9.8	15.4	16.6	3.1
14.0	21.1	11.8	10.5	20.1	2.1
16.0	15.3	13.9	7.6	23.6	1.5

[^2]

LDN6			
Nominal Lumens	Lumens	Wattage	Lm/W
500	527.9	5.8	90.5
750	758.1	8.9	85.1
1000	950.1	10.4	91.0
1500	1514	17.5	86.4
2000	2006	22.5	89.1
2500	2504	28.3	88.6
3000	3021	34.8	86.9
4000	4008	44.3	90.6
5000	4975	57.7	86.3

how to estimate delivered lumens in emergency mode

Use the formula below to estimate the delivered lumens in emergency mode

Delivered Lumens $=\mathbf{1 . 2 5} \mathbf{x} \mathbf{P x}$ LPW

$P=$ Ouput power of emergency driver. $P=10 W$ for PS1055CP
LPW = Lumen per watt rating of the luminaire. This information is available on the ABL luminaire spec sheet.
The LPW rating is also available at Designlight Consortium.

LUMEN OUTPUT MULTIPLIERS - FINISH			
	Clear (AR)	White (WR)	Black (BR)
Specular (LS)	1.0	N/A	N/A
Semi-specular (LSS)	0.950	N/A	N/A
Matte diffuse (LD)	0.85	N/A	N/A
Painted	N/A	0.87	0.73

LUMEN OUTPUT MULTIPLIERS - CCT					
	$\mathbf{2 7 0 0 K}$	$\mathbf{3 0 0 0 K}$	$\mathbf{3 5 0 0 K}$	$\mathbf{4 0 0 0 K}$	$\mathbf{5 0 0 0 K}$
80 CRI	0.950	0.966	1.000	1.025	1.101

Notes

- Tested in accordance with IESNA LM-79-08.
- Tested to current IES and NEMA standards under stabilized laboratory conditions.
- CRI: 80 typical.

Catalog Number

Notes	Type

FEATURES \& SPECIFICATIONS

INTENDED USE - A general purpose and energy-efficient surface-mounted or suspended LED fixture, suitable for wet, damp and/or cold locations. For vapor-tight demanding environments where moisture or dust is a concern and where relatively low fixture mounting heights and wide fixture spacing are common. Not for use or installation in direct outdoor sunlight. Must be installed under canopy or covered ceiling. For direct sunlight installations, please refer to the EMX product family. Typical applications include industrial facilities, parking garages, retail malls, multi-purpose rooms, garden centers, and food processing. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. Click here for Acrylic-Polycarbonate Compatibility table for suitable use.
Certain airborne contaminants may adversely affect the functioning of LEDs and other electronic components, depending on various factors such as concentrations of the contaminants, ventilation, and temperature at the end-user location. Click here for a list of substances that may not be suitable for interaction with LEDs and other electronic components.

CONSTRUCTION — One-piece 5VA fiberglass housing with integral perimeter channel utilizing continuous poured-in-place NEMA 4X gasket. Approved for through wiring. Captive polymeric latches are standard. Stainless steel latches (\#316) available as an option for food processing or more demanding applications.
Power connection is easily accomplished through pre-drilled holes.
OPTICS — Injection molded, acrylic lens (. $080^{\prime \prime}$ thick) provides high impact-resistance comparable to 100% DR. A UV stabilized polycarbonate diffuser is available ($.080^{\prime \prime}$ thick) in clear or frosted for additional impact strength where vandal protection is desired.

Expected service life of 60,000 hours at 80% lumen maintenance (L80); predicted life of more than 100,000 hours.
ELECTRICAL — Utilizes high-efficiency LEDs mounted to core circuit boards. High-efficiency drivers operate 120-277 (MVOLT) and 347-480 (HVOLT) offered with 0-10 volt dimming, dims to 10\%. Standard Luminaire Surge Protection Level: 6kV/3kA Surge Rated per ANSI C82.77-5-2015.
INSTALLATION — A pair of stainless steel surface mount brackets (SMB) are included (unless another mounting option is chosen) allowing for surface (ceiling) or suspension mount applications using included bail with aircraft cable or chain. Optional pair of dual pendant mount brackets (DPMB) are available for surface (ceiling) or suspension mount applications using either $3 / 8$ " threaded rod or included bail with aircraft cable or chain. Optional pair of angle mounting brackets (ANGBKT) for wall mount applications

LISTINGS - CSA Certified to UL and C-UL Standards. Suitable for wet location. IP65,IP66, IP67 rated and certified to meet NSF Splash Zone 2. NEMA 4X rated. Sensors maintain IP65 and IP66 only. See chart on page 5 for Ambient Temperatures.
DesignLights Consortium ${ }^{\circledR}$ (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.
BUY AMERICAN - Product with the BAA option is assembled in the USA and meets the Buy America(n) government procurement requirements under FAR, DFARS and DOT. Please refer to www.acuitybrands.com/buy-american for additional information.
WARRANTY - 5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/ terms-and-conditions

NOTE: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

SURFACE/ SUSPENDED / WALL MOUNT

US

Buy American

44+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+Certified solution for nLight ${ }^{\circledR}$ control networks marked by a shaded background*

To learn more about $\mathrm{A}+$, visit www.acuitybrands.com/aplus.
*See ordering tree for details

	Capable option his color backg	indicated ound.							
ORDERING INFORMATION Lead times will vary depending on options selected. Consult with your sales representatie						Example: EMS L48 4000LM IMAFL WD MVOLT GZ10 40K 80CRI			
Series	Length	Nominal Lumens	Diffuser		Distribution	Voltage	Driver	Color temperature	CRI
EMS	L24 24" \ddagger $\text { L48 48" } \ddagger$ L96 96" \ddagger	2000LM 2,000 lumens 3000LM 3,000 lumens 4000LM 4,000 lumens 6000 LM 6,000 lumens 3000LM 3,000 lumens 4000LM 4,000 lumens 6000LM 6,000 lumens 8000LM 8,000 lumens 10000LM 10,000 lumens 12000LM 12,000 lumens 9000LM 9,000 lumens 12000LM 12,000 lumens 15000LM 15,000 lumens 18000LM 18,000 lumens 20000LM 20,000 lumens 24000LM 24,000 lumens	IMAFL IMACD IMAFD LPAFL LPACL LPPCL LPPFL	Acrylic, lineal ribbed frosted lens Acrylic, clear deep lens Acrylic, deep frosted lens Acrylic, low profile frosted lens Acrylic, low profile clear lens Polycarbonate, low profile clear lens Polycarbonate, low profile frosted lens	MD Medium WD Wide PGD Parking garage	MVOLT $120-277 \mathrm{~V}$ HVOLT $347-480 \mathrm{~V} \ddagger$ 120 120 V 277 277 V 347 347 V 480 480 V	$\begin{array}{lll} \text { GZ10 } \begin{array}{l} 0-10 \mathrm{~V} \\ \\ \text { dimming } \end{array} \end{array}$	30 K 3000 K 35 K 3500 K 40 K 4000 K 50 K 5000 K	$\begin{array}{ll} 80 \mathrm{CRI} & 80 \mathrm{CRI} \\ 90 \mathrm{CRI} & 90 \mathrm{CRI} \end{array}$

NOTE: \ddagger indicates option chosen has ordering restrictions. Please reference ordering restrictions chart, page 3 . Options are sorted alphanumerically.

Accessories: Order as separate catalog number.	
HMHCH36	3 foot (36 inches) jack chain (ships as pair)
MHHK120 M50	10 foot (120 inches) single leg air craft cable (ships as pair)
MHHK120SS PAIR	10 foot (120 inches) single leg air craft cable, stainless steel (ships as pair)
RK1 T10BIT W/PINU	Hex-base driver bit, Torx TX10, for tamper resistant screws with center reject pin
EMSDPMB	Dual pendant mounting bracket (ships as a pair) \ddagger
EMSANGBKT	Angle bracket (ships as pair) \ddagger
EMSSMB	Surface mount bracket (ships as pair) \ddagger

OPERATIONAL DATA (80 CRI*, MD**, MVOLT***)

Length	Package	$\begin{gathered} \text { Input } \\ \text { Wattage } \end{gathered}$	CCT	Frosted Lens' Lumens (LPW)				Clear Lens' Lumens (LPW)		
				IMAFL	IMAFD	LPAFL	LPPFL	IMACD	LPACL	LPPCL
L24	2000LM	13.4	30K	1962 (147)	2083 (156)	2076 (155)	1861 (139)	2112 (158)	2105 (158)	1890 (142)
			35K	2002 (150)	2126 (159)	2118 (159)	1899 (142)	2155 (161)	2147 (161)	1929 (144)
			40K	2099 (157)	2228 (167)	2220 (166)	1991 (149)	2259 (169)	2251 (169)	2022 (151)
			50K	2122 (159)	2252 (169)	2244 (168)	2013 (151)	2284 (171)	2276 (170)	2044 (153)
	3000LM	19.9	30K	2869 (144)	3046 (153)	3035 (153)	2721 (137)	3088 (155)	3077 (155)	2764 (139)
			35K	2927 (147)	3108 (156)	3096 (156)	2777 (140)	3151 (158)	3139 (158)	2820 (142)
			40K	3069 (154)	3258 (164)	3246 (163)	2911 (146)	3303 (166)	3291 (166)	2956 (149)
			50K	3102 (156)	3293 (166)	3281 (165)	2942 (148)	3339 (168)	3327 (167)	2988 (150)
	4000LM	26.0	30K	3676 (142)	3903 (150)	3889 (150)	3487 (134)	3957 (152)	3943 (152)	3541 (136)
			35K	3751 (145)	3982 (153)	3968 (153)	3558 (137)	4037 (156)	4023 (155)	3613 (139)
			40K	3932 (152)	4174 (161)	4159 (160)	3730 (144)	4232 (163)	4217 (162)	3788 (146)
			50K	3975 (153)	4219 (163)	4204 (162)	3770 (145)	4278 (165)	4263 (164)	3829 (148)
	6000LM	39.2	30K	5287 (135)	5613 (143)	5593 (143)	5015 (128)	5691 (145)	5671 (145)	5093 (130)
			35K	5395 (138)	5727 (146)	5707 (145)	5117 (130)	5806 (148)	5786 (147)	5196 (132)
			40K	5655 (144)	6004 (153)	5982 (153)	5364 (137)	6087 (155)	6065 (155)	5447 (139)
			50K	5717 (146)	6069 (155)	6047 (154)	5422 (138)	6153 (157)	6131 (156)	5506 (140)
L48	3000LM	18.0	30K	2689 (149)	2855 (158)	2844 (158)	2551 (141)	2894 (160)	2884 (160)	2590 (144)
			35K	2743 (152)	2912 (161)	2902 (161)	2602 (144)	2953 (164)	2942 (163)	2643 (146)
			40K	2876 (159)	3053 (169)	3042 (169)	2728 (151)	3095 (172)	3084 (171)	2770 (154)
			50K	2907 (161)	3086 (171)	3075 (170)	2758 (153)	3129 (173)	3118 (173)	2800 (155)
	4000LM	23.8	30K	3543 (149)	3762 (158)	3748 (157)	3361 (141)	3814 (160)	3800 (160)	3413 (143)
			35K	3615 (152)	3838 (161)	3824 (161)	3429 (144)	3891 (163)	3877 (163)	3482 (146)
			40K	3790 (159)	4023 (169)	4009 (168)	3595 (151)	4079 (171)	4064 (171)	3650 (153)
			50K	3831 (161)	4067 (171)	4052 (170)	3634 (153)	4123 (173)	4109 (173)	3690 (155)
	6000LM	37.8	30K	5284 (140)	5609 (149)	5589 (148)	5012 (133)	5687 (151)	5667 (150)	5090 (135)
			35K	5391 (143)	5723 (152)	5703 (151)	5114 (135)	5802 (154)	5782 (153)	5193 (138)
			40K	5651 (150)	6000 (159)	5978 (158)	5361 (142)	6083 (161)	6061 (161)	5444 (144)
			50K	5713 (151)	6065 (161)	6043 (160)	5419 (144)	6149 (163)	6127 (162)	5503 (146)
	8000LM	50.5	30K	6952 (138)	7380 (146)	7354 (146)	6594 (131)	7482 (148)	7456 (148)	6696 (133)
			35K	7093 (141)	7530 (149)	7503 (149)	6728 (133)	7634 (151)	7607 (151)	6832 (135)
			40K	7435 (147)	7894 (156)	7865 (156)	7053 (140)	8003 (159)	7975 (158)	7162 (142)
			50K	7516 (149)	7979 (158)	7950 (158)	7129 (141)	8090 (160)	8061 (160)	7240 (144)
	10000LM	62.0	30K	8646 (140)	9179 (148)	9146 (148)	8201 (132)	9306 (150)	9273 (150)	8328 (134)
			35K	8822 (142)	9365 (151)	9332 (151)	8368 (135)	9495 (153)	9461 (153)	8497 (137)
			40K	9248 (149)	9817 (158)	9782 (158)	8772 (142)	9953 (161)	9918 (160)	8908 (144)
			50K	9348 (151)	9924 (160)	9888 (160)	8867 (143)	10061 (162)	10026 (162)	9004 (145)
	12000LM	75.0	30K	10406 (139)	11047 (147)	11007 (147)	9871 (132)	11200 (149)	11160 (149)	10024 (134)
			35K	10617 (141)	11271 (150)	11231 (150)	10071 (134)	11427 (152)	11387 (152)	10227 (136)
			40K	11130 (148)	11816 (157)	11773 (157)	10557 (141)	11979 (160)	11937 (159)	10721 (143)
			50K	11251 (150)	11944 (159)	11901 (159)	10672 (142)	12109 (161)	12066 (161)	10837 (144)
196	9000LM	53.4	30K	7962 (149)	8452 (158)	8422 (158)	7552 (141)	8570 (160)	8539 (160)	7669 (144)
			35K	8124 (152)	8624 (161)	8593 (161)	7706 (144)	8743 (164)	8713 (163)	7825 (146)
			40K	8516 (159)	9040 (169)	9008 (169)	8078 (151)	9166 (172)	9133 (171)	8203 (154)
			50K	8608 (161)	9138 (171)	9106 (170)	8165 (153)	9265 (173)	9232 (173)	8292 (155)
	12000LM	75.5	30K	10570 (140)	11221 (149)	11181 (148)	10026 (133)	11377 (151)	11337 (150)	10182 (135)
			35K	10785 (143)	11449 (152)	11408 (151)	10230 (135)	11608 (154)	11567 (153)	10388 (138)
			40K	11306 (150)	12002 (159)	11959 (158)	10724 (142)	12168 (161)	12125 (161)	10890 (144)
			50K	11428 (151)	12132 (161)	12089 (160)	10840 (144)	12300 (163)	12257 (162)	11008 (146)
	15000LM	94.3	30K	13399 (142)	14225 (151)	14174 (150)	12710 (135)	14422 (153)	14371 (152)	12907 (137)
			35K	13671 (145)	14513 (154)	14461 (153)	12968 (138)	14714 (156)	14662 (156)	13169 (140)
			40K	14331 (152)	15214 (161)	15160 (161)	13594 (144)	15425 (164)	15370 (163)	13805 (146)
			50K	14487 (154)	15379 (163)	15324 (163)	13741 (146)	15592 (165)	15537 (165)	13954 (148)
	18000LM	103.4	30K	15901 (154)	16881 (163)	16820 (163)	15083 (146)	17114 (165)	17054 (165)	15317 (148)
			35K	16224 (157)	17223 (167)	17161 (166)	15389 (149)	17462 (169)	17400 (168)	15627 (151)
			40K	17007 (164)	18055 (175)	17990 (174)	16132 (156)	18305 (177)	18240 (176)	16382 (158)
			50K	17192 (166)	18251 (176)	18185 (176)	16307 (158)	18503 (179)	18438 (178)	16560 (160)
	20000LM	125.5	30K	17549 (140)	18630 (148)	18564 (148)	16646 (133)	18888 (150)	18822 (150)	16904 (135)
			35K	17906 (143)	19008 (151)	18940 (151)	16984 (135)	19272 (154)	19204 (153)	17247 (137)
			40K	18770 (150)	19927 (159)	19855 (158)	17804 (142)	20202 (161)	20131 (160)	18080 (144)
			50K	18974 (151)	20143 (160)	20070 (160)	17997 (143)	20421 (163)	20349 (162)	18276 (146)
	24000LM	149.5	30K	21142 (141)	22445 (150)	22364 (150)	20055 (134)	22756 (152)	22675 (152)	20365 (136)
			35K	21571 (144)	22900 (153)	22818 (153)	20461 (137)	23217 (155)	23135 (155)	20779 (139)
			40K	22613 (151)	24006 (161)	23920 (160)	21450 (143)	24339 (163)	24253 (162)	21782 (146)
			50K	22858 (153)	24266 (162)	24179 (162)	21682 (145)	24602 (165)	24516 (164)	22018 (147)

[^3]CSA LISTED AMBIENT RATING*

		Standard** (surface)"	Standard** (suspended)"	E10WMCP (surface)	E10WMCP (suspended)	BE6WCP (surface)	$\begin{gathered} \text { BE6WCP } \\ \text { (suspended) } \end{gathered}$
L24	2000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	3000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	4000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	6000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
L48	3000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	4000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	6000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	8000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	10000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	12000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
L96	9000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	12000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	15000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	18000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	20000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$
	24000LM	$35^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}$

*Minimum Ambient is $-30^{\circ} \mathrm{C}$ unless noted, when the fixture is suspended at least $12^{\prime \prime}$ from the ceiling.
**All options not specifically listed in this table are considered standard

HVOLT SCALE FACTOR

	Factor
2000 LM	0.814
3000 LM	0.814
4000 LM	0.814
6000 LM	0.835
8000 LM	0.845
9000 LM	0.850
10000 LM	0.850
12000 LM	0.845
15000 LM	0.860
18000 LM	0.880
20000 LM	0.845
24000 LM	0.865

CONFIGURATION WEIGHTS

	Standard	w/ Sensor	w/ Battery
L 24	8	9	9
L 48	11	12	12
L 96	23	24	24

NUMBER OF BOARDS AND DRIVERS

Lumen package	Fixture length	Number of boards	Number of drivers
2000LM	L24	1	1
3000LM		1	1
4000LM		1	1
6000LM		1	1
3000LM	L48	2	1
4000LM		2	1
6000LM		2	1
8000LM		2	1
10000LM		2	1
12000LM		2	1
9000LM	L96	4	1
12000LM		4	2
15000LM		4	2
18000LM		4	2
20000LM		4	2
24000LM		4	2

,

All dimensions are inches (centimeters) unless otherwise indicated.

PHOTOMETRICS

See www.holophane.com for photometry reports.

Catalog Number

Notes	Type

Phuzion

LED High Bay
Wet location listed

Description

The Phuzion LED luminaire takes high-bay lighting to new levels of lumen output and temperature tolerance. By marrying the latest in LED technology with the legendary illuminating dynamics of Holophane's prismatic glass, the Phuzion high bay delivers unparalleled performance and reliability. Phuzion is highly versatile and can be installed with the optics facing down or inverted for maximum uplight.

Optics

- Prismatic borosilicate glass maintains highest levels of luminosity over time.
- Glass doesn't fade, discolor or otherwise degrade in harsh environments.
- Six distributions available to achieve results from any mounting height.
- Prismatic optics combined with high efficiency LED's achieve maximum spacing and superior uniformity.
- IP65 rated optics.
- Injection molded acrylic lens available.
- Optional non-silicone gaskets, ideal for automotive production.
- Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. Click here for Acrylic-Polycarbonate Compatibility table for suitable uses.
- Certain airborne contaminants may adversely affect the functioning of LEDs and other electronic components, depending on various factors such as concentrations of the contaminants, ventilation, and temperature at the enduser location. Click here for a list of substances that may not be suitable for interaction with LEDs and other electronic components.

Mechanical

- Robust cast aluminum housing with low copper content (0.6% CU content) withstands hot and dirty environments.
- Super durable TGIC thermoset powder coat finish provides 1500 hours salt fog rating. CR (corrosion resistant) optional finish is a five-stage pre-treating and painting process that yields over 5,000 hours salt rating per ASTM B117.
- Pendant mount standard.
- Stainless steel screws ship standard when ordered with the PM mounting option.

Typical Applications	
- Heavy industrial	- Natatorium
- Manufacturing	
- Warehousing	
- Large indoor	

Electrical

- 0-10V Dimming driver is standard, dims to 10%.
- XVOLT is an optional robust driver solution designed to assist with power quality issues and a dropped neutral in 277V input as derived from 480V Wye. Supports 277-480V; 6kV surge rated.
- Luminaire Surge Protection Level: Designed to withstand up to 10kV/5kA per ANSI C82.77-5-2015.
- 70, 80, 90 CRI available
- $3000 \mathrm{~K}, 3500 \mathrm{~K}, 4000 \mathrm{~K}$ or 5000 K CCT available.
- Aluminum core printed circuit board.

Listings

- CSA Certified to meet US and Canadian standards.
- Suitable for use in wet locations.
- $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $158^{\circ} \mathrm{F}\left(70^{\circ} \mathrm{C}\right)$ (see chart on page 5).
- .5 G vibration rated.
- IK rated (see chart on page 5)
- DesignLights Consortium ${ }^{\ominus}$ (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

Warranty

5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-andconditions
NOTE: Actual performance may differ as a result of end-user environment and application.
All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$.

Dimensions: Inches (millimeters) unless otherwise noted.
Diameter: 21.22 (538.99)
Height: 19.02-23.46 (483.11-595.88)
Weight: 33-38 lbs. (15.0-17.2 kg)

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+ Certified solution for nLight ${ }^{\oplus}$ control networks marked by a shaded background*

To learn more about A+, visit www.acuitybrands.com/aplus.
*See ordering tree for details

DIMENSIONAL DATA

Pendant (PM)

Emergency Remote Bodine BSL722C Battery

HKMAR Hook (PF-129)

Wire Guard (WGX)

Quick Disconnect (QD) or Non-Disconnect Thru-Wiring (NDT)

Diameter

EMERGENCY REMOTE PS30250R BATTERY

ORDERING INFORMATION
Example: PHZ 45000LM ND MVOLT 40K 70CRI PM DBXD

OPERATIONAL DATA

Ambient Temperature Ratings

Mounting	$\begin{gathered} \text { Occ } \\ \text { Sensor } \end{gathered}$	QDH or NonDisconnect	BTP or NLTAIR2	Battery				Voltage	12000LM	18000LM	24000LM	\|30000LM	Ambient		45000LM	50000LM	60000LM	Supply Wire
				BSL722C	PS30250	E10WCP	E15WCPR						35000LM	40000LM				
Pendant	N	N	N	N	N	N	N	120-277	70	70	70	65	65	60	60	60	55	90 C
Pendant	N	N	N	N	N	N	N	347-480	70	70	70	65	65	60	60	60	55	90 C
Pendant	Y	N	N	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90C
Pendant	Y	N	N	N	N	N	N	347-480	55	55	55	45	45	40	40	40	40	90C
Pendant	N	N	Y	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90C
Pendant	N	N	Y	N	N	N	N	347-480	55	55	55	-	-	-	-	-	-	90C
Pendant	Y	N	Y	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90 C
Pendant	Y	N	Y	N	N	N	N	347-480	55	55	55	-	-	-	-	-	-	90 C
Pendant	N	N	N	Y	N	N	N	120-277	50	50	50	50	50	50	50	50	50	90C
Pendant	N	N	N	N	Y	N	N	120-277	45	45	45	45	45	45	45	45	45	90 C
Pendant	N	N	N	N	N	Y	N	120-277	50	50	50	-	-	-	-	-	-	90 C
Pendant	N	N	N	N	N	N	Y	120-277	55	55	55	50	50	50	50	50	50	90C
Pendant	Y	N	N	Y	N	N	N	120-277	50	50	50	45	45	40	40	40	40	90 C
Pendant	Y	N	N	N	Y	N	N	120-277	45	45	45	45	45	40	40	40	40	90C
Pendant	Y	N	N	N	N	Y	N	120-277	50	50	50	-	-	-	-	-	-	90C
Pendant	Y	N	N	N	N	N	Y	120-277	55	55	55	45	45	40	40	40	40	90C
Pendant	N	N	Y	Y	N	N	N	120-277	50	50	50	45	45	40	40	40	40	90C
Pendant	N	N	Y	N	Y	N	N	120-277	45	45	45	45	45	40	40	40	40	90C
Pendant	N	N	Y	N	N	Y	N	120-277	50	50	50	-	-	-	-	-	-	90 C
Pendant	N	N	Y	N	N	N	Y	120-277	55	55	55	45	45	40	40	40	40	90 C
Pendant	Y	N	Y	Y	N	N	N	120-277	50	50	50	45	45	40	40	40	40	90C
Pendant	Y	N	Y	N	Y	N	N	120-277	45	45	45	45	45	40	40	40	40	90C
Pendant	Y	N	Y	N	N	Y	N	120-277	50	50	50	-	-	-	-	-	-	90C
Pendant	Y	N	Y	N	N	N	Y	120-277	55	55	55	45	45	40	40	40	40	90C
Ceiling	N	Y	N	N	N	N	N	120-277	70	70	70	65	65	60	60	60	55	90C
Ceiling	N	Y	N	N	N	N	N	347-480	70	70	70	65	65	60	60	60	55	90C
Ceiling	Y	Y	N	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90 C
Ceiling	Y	Y	N	N	N	N	N	347-480	55	55	55	45	45	40	40	40	40	90C
Ceiling	N	Y	Y	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90 C
Ceiling	N	Y	Y	N	N	N	N	347-480	55	55	55	-	-	-	-	-	-	90C
Ceiling	Y	Y	Y	N	N	N	N	120-277	55	55	55	45	45	40	40	40	40	90 C
Ceiling	Y	Y	Y	N	N	N	N	347-480	55	55	55	-	-	-	-	-	-	90C

Impact Resistance (IK Ratings)

Lens Material	Rating
Glass	IK06
Acrylic	IK07

OPERATIONAL DATA
Operating Characteristics

Lumen Package	Distribution	Delivered Lumens												$\begin{aligned} & \text { Watts } \\ & \text { @ } 120 \mathrm{~V} \end{aligned}$	LPW @ 5000K, 70CRI
		$\begin{aligned} & 3000 \mathrm{~K} \\ & 70 \mathrm{CRI} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 3000 \mathrm{~K} \\ & 80 \mathrm{CR} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 3000 \mathrm{~K} \\ & 90 \mathrm{RI} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 3500 \mathrm{~K} \\ & 70 \mathrm{RI} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 3500 \mathrm{~K} \\ & 80 \mathrm{CRI} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 3500 \mathrm{~K} \\ & 90 \mathrm{RI} \\ & \text { @25 } \end{aligned}$	$\begin{aligned} & 4000 \mathrm{~K} \\ & 70 \mathrm{RI} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4000 \mathrm{~K} \\ & 80 \mathrm{CRI} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 4000 \mathrm{~K} \\ & 90 \mathrm{CRI} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5000 \mathrm{~K} \\ & 70 \mathrm{RI} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5000 \mathrm{~K} \\ & 80 \mathrm{CR} \\ & \mathrm{@} 25^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 5000 \mathrm{~K} \\ & 90 \mathrm{CRI} \\ & @ 25^{\circ} \mathrm{C} \end{aligned}$		
12000LM	FD \ddagger	11921	11142	8804	11921	11453	9194	13011	11843	9973	13401	11999	10908	89	151
	FDFR \ddagger	10878	10167	8034	10878	10452	8390	11874	10807	9101	12229	10949	9954	89	137
	FSMG \ddagger	12068	11279	8913	12068	11594	9307	13172	11989	10096	13566	12147	11042	89	152
	MD	12832	11261	9843	13085	11717	10054	12983	11852	10172	12848	12097	10924	81	159
	MDFR	11858	10407	9096	12092	10828	9291	11998	10953	9400	11873	11179	10095	81	147
	ND	12927	11345	9916	13182	11804	10129	13080	11940	10248	12944	12187	11005	81	160
	NDFR	11864	10413	9101	12099	10834	9296	12005	10959	9406	11880	11185	10100	81	147
	NDA	13041	11445	10004	13299	11909	10129	13196	12046	10339	13058	12295	11102	81	161
	WD	12839	11267	9848	13092	11724	10060	12991	11859	10178	12855	12104	10930	81	159
	WDFR	11145	9781	8549	11365	10177	8733	11277	10294	8835	11159	10507	9488	81	138
	WDA	13090	11488	10041	13348	11953	10256	13245	12091	10377	13107	12340	11143	81	162
18000LM	FD \ddagger	17256	16128	12745	17256	16579	13308	18835	17143	14436	19399	17369	15790	132	147
	FDFR \ddagger	15747	14718	11630	15747	15129	12145	17188	15644	13174	17703	15850	14409	132	134
	FSMG \ddagger	17469	16327	12902	17469	16784	13473	19067	17355	14614	19638	17583	15984	132	149
	MD	20350	17860	15611	20752	18583	15945	20591	18797	16133	20377	19185	17324	130	157
	MDFR	18806	16505	14426	19177	17173	14735	19029	17371	14909	18831	17730	16010	130	145
	ND	20501	17992	15726	20905	18721	16063	20744	18936	16252	20528	19327	17453	130	158
	NDFR	18816	16514	14434	19188	17182	14744	19039	17380	14917	18841	17739	16019	130	145
	NDA	20683	18152	15866	21091	18887	16206	20928	19104	16397	20710	19499	17608	130	159
	WD	20361	17870	15619	20763	18593	15954	20602	18807	16142	20388	19196	17334	130	157
	WDFR	17675	15512	13559	18024	16140	13849	17884	16326	14012	17698	16663	15047	130	136
	WDA	20760	18219	15925	21169	18957	16266	21005	19175	16457	20787	19571	17673	130	160
24000LM	FD \ddagger	22374	20912	16525	22374	21497	17256	24422	22228	18718	25153	22521	20473	178	141
	FDFR \ddagger	20418	19084	15080	20418	19617	15747	22286	20285	17082	22954	20551	18683	178	129
	FSMG \ddagger	22650	21170	16729	22650	21762	17469	24723	22502	18949	25463	22799	20726	178	143
	MD	25585	22454	19626	26090	23363	20047	25888	23632	20283	25619	24121	21781	170	151
	MDFR	23643	20750	18137	24110	21590	18526	23923	21839	18744	23675	22290	20128	170	139
	ND	25774	22620	19772	26283	23536	20196	26080	23807	20433	25808	24299	21942	170	152
	NDFR	23657	20762	18147	24123	21602	18536	23937	21851	18754	23688	22302	20139	170	139
	NDA	26003	22821	19947	26516	23745	20375	26311	24019	20614	26037	24515	22137	170	153
	WD	25599	22466	19637	26104	23376	20058	25902	23645	20294	25633	24134	21793	170	151
	WDFR	22222	19503	17046	22660	20292	17412	22485	20526	17617	22251	20950	18918	170	131
	WDA	26100	22906	20021	26615	23833	20450	26409	24108	20691	26134	24606	22219	170	154
30000LM	FD \ddagger	25560	23889	18877	25560	24557	19713	27899	25393	21383	28734	25727	23388	218	132
	FDFR \ddagger	23325	21800	17227	23325	22410	17989	25459	23172	19514	26221	23477	21343	218	120
	FSMG \ddagger	25875	24184	19110	25875	24860	19956	28243	25706	21647	29088	26044	23677	218	133
	MD	27294	25510	20159	27294	26224	21050	29792	27116	22834	30684	27473	24975	218	141
	MDFR	25223	23575	18629	25223	24234	19453	27531	25058	21102	28355	25388	23080	218	130
	ND	27496	25699	20308	27496	26418	21206	30012	27317	23003	30911	27676	25160	218	142
	NDFR	25237	23588	18639	25237	24247	19464	27546	25072	21113	28371	25402	23093	218	130
	NDA	27740	25927	20488	27740	26653	21395	30279	27559	23208	31185	27922	25383	218	143
	WD	27309	25524	20170	27309	26238	21062	29808	27131	22847	30700	27488	24989	218	141
	WDFR	23706	22157	17509	23706	22777	18283	25876	23551	19833	26650	23861	21692	218	122
	WDA	27843	26023	20564	27843	26751	21474	30391	27661	23294	31301	28025	25478	218	144
35000LM	FD \ddagger	28779	26898	21255	28779	27650	22195	31412	28591	24076	32352	28967	26333	254	127
	FDFR \ddagger	26262	24546	19396	26262	25232	20255	28665	26091	21971	29524	26434	24031	254	116
	FSMG \ddagger	29134	27229	21517	29134	27991	22469	31799	28943	24373	32752	29324	26658	254	129
	MD	30732	28723	22697	30732	29526	23702	33544	30531	25710	34548	30932	28120	254	136
	MDFR	28400	26543	20975	28400	27286	21903	30998	28214	23759	31926	28585	25987	254	126
	ND	30959	28936	22865	30959	29745	23877	33792	30757	25900	34804	31161	28329	254	137
	NDFR	28415	26558	20986	28415	27301	21915	31015	28230	23772	31944	28601	26001	254	126
	NDA	31234	29193	23068	31234	30009	24089	34092	31030	26130	35113	31438	28580	254	138
	WD	30748	28739	22710	30748	29543	23714	33562	30547	25724	34567	30949	28136	254	136
	WDFR	26692	24947	19714	26692	25645	20586	29134	26517	22330	30007	26866	24424	254	118
	WDA	31350	29301	23154	31350	30120	24178	34218	31145	26227	35243	31555	28686	254	139

OPERATIONAL DATA CONTINUED
Emergency Lumen Output

```
How to Estimate Delivered Lumens in Emergency Mode
Use the formula below to estimate the delivered lumens in emergency mode
Delivered Lumens = P x LPW
P}=\mathrm{ Output power of emergency driver
LPW = Lumen per watt rating of the luminaire. (See charts on pages 6 and 7)
The LPW rating is also available at Designlight Consortium
P = 10 watts for E10WCP
P= 15 watts for E15WCPR
P=21.3 watts for BSL722CR
P=30 watts for PS30250R
```

Lumen Maintenance 12000LM Package

Ambient ${ }^{\circ} \mathrm{C}$	0 Hours	$\mathbf{1 5 0 0 0}$ Hours	30000 Hours	36000 Hours	45000 Hours	60000 Hours	100000 Hours
25	1.00	0.98	0.97			0.95	0.92
30	1.00	0.98	0.97	0.96	0.96	0.95	0.92
35	1.00	0.98	0.97	0.96	0.96	0.95	0.92
40	1.00	0.98	0.97	0.96	0.96	0.95	0.92
45	1.00	0.97	0.96	0.96	0.95	0.94	0.91
50	1.00	0.97	0.96	0.95	0.95	0.93	0.90
55	1.00	0.97	0.95	0.95	0.94	0.93	0.89
60	1.00	0.97	0.95	0.94	0.93	0.92	0.88
65	1.00	0.96	0.95	0.94	0.93	0.91	0.87
70	1.00	0.96	0.94	0.93	0.92	0.9	0.85

Lumen Maintenance 18000LM Package

Ambient ${ }^{\circ} \mathrm{C}$	0 Hours	$\mathbf{1 5 0 0 0}$ Hours	$\mathbf{3 0 0 0 0}$ Hours	$\mathbf{3 6 0 0 0}$ Hours	45000 Hours	60000 Hours	100000 Hours
25	1.00	0.98	0.97	0.96		0.95	0.92
30	1.00	0.98	0.97	0.96	0.96	0.95	0.92
35	1.00	0.97	0.96	0.96	0.95	0.94	0.91
40	1.00	0.97	0.96	0.95	0.95	0.93	0.90
45	1.00	0.97	0.95	0.95	0.94	0.93	0.89
50	1.00	0.97	0.95	0.94	0.94	0.92	0.88
55	1.00	0.96	0.95	0.94	0.93	0.91	0.87
60	1.00	0.96	0.94	0.93	0.92	0.90	0.85
65	1.00	0.95	0.92	0.91	0.90	0.88	0.83
70	1.00	0.94	0.91	0.9	0.88	0.85	0.78

Lumen Maintenance 24000LM Package

Ambient ${ }^{\circ} \mathrm{C}$	0 Hours	$\mathbf{1 5 0 0 0}$ Hours	30000 Hours	36000 Hours	45000 Hours	60000 Hours	100000 Hours
25	1.00	0.98	0.97			0.95	0.92
30	1.00	0.98	0.97	0.96	0.96	0.95	0.92
35	1.00	0.97	0.96	0.95	0.95	0.94	0.91
40	1.00	0.97	0.96	0.95	0.94	0.93	0.90
45	1.00	0.97	0.95	0.95	0.94	0.92	0.88
50	1.00	0.96	0.95	0.94	0.93	0.91	0.87
55	1.00	0.96	0.94	0.94	0.92	0.91	0.86
60	1.00	0.96	0.94	0.93	0.92	0.90	0.84
65	1.00	0.94	0.92	0.90	0.89	0.86	0.80
70	1.00	0.93	0.9	0.89	0.87	0.83	0.76

Appendix G:

Proposed Lighting Control Network and Equipment Cutsheets

(2) Network Riser - NETWORK BACKBONE (WIRELESSS)
$\underset{\substack{x(5) \\ \mid 202}}{\substack{10}}$

$\underset{\substack{x 0 \\ \mid x \times 1}}{\substack{20}}$

(14) $\frac{\text { nLight Air NLIGHT AIR ADAPTOR - TYP CORRIDOR (QTYS MAY VARY) }}{\text { wir }}$

Mwneless

$$
\text { en } 2
$$

(13) Light Air LIGHT AR ADAPTOR - TYP AUOITORUM (OTYS MAY VARY)
(16) Ligight Air NLIGHT AIR ADAPTOR - TYP LIBRARY (QTYS MAY VARY)

(18) ${ }^{\text {nighetess }}$ Air NLIGHT AIR ADAPTOR - TYP STUDENT DINING (QTYS MAY VARY)

(19) $\frac{\text { nLight }}{\text { mintelss }}$ Air Standalone - TYP CLASSROOM (QTYS MAY VARY)

(20) $\frac{\text { LLight }}{\text { wreterss }}$ Air Standalone - TYP OFFICE (QTYS MAY VARY)

21) $\frac{\text { nLight Air Standalone - TYP RESTROOM (QTYS MAY VARY) }}{\text { metes }}$

PLEASE NOTE THAT RPODBA (BATTERY) SWITCHES SHOWN IN THESE LIGHTING CONTROL WITH RPODLA (LINE POWERED) SWITCHES IN LIGHTING REPORT. COSTING WAS CONFIRMED TO BE
THE SAME

USB EXTENDER FOR NLIGHT AIR ADAPTER INSTALLATION

OVERVIEW

The nLight ECLYPSETM ${ }^{\text {M }}$ system controller connects an nLight ${ }^{\circledR}$ lighting network to support connectivity and management over an IP network, control and device setting adjustment, integration with building management, integration with demand response, and more.

FEATURES

- Communicates over IP, allowing the system controller and connected lighting controls devices to be accessed and configured across a local area network
- Each system controller supports up to 750 nLight and nLight AIR devices. Additional controllers can connect and scale a system of lighting controls to a maximum of 20,000 devices
- BACnet Testing Laboratories (BTL) listed as a BACnet Building Controller (B-BC)
- Can be discovered and managed through free SensorView software and through an onboard web GUI
- Provides time-of-day and astronomical time clock capabilities for scheduled lighting control events
- Manages forwarding of global control channels and system profiles to affect devices on multiple controllers at the same time
- Enhanced security through toggleable HTP or HTPS connections, a FIPS 140-2, Level 1 compliant security interface, SSO or Radius Server capabilities, and more
- Optional demand response client allows activation of configurable load shed dimming levels by utility DRAS through OpenADR 2.0a

Warranty

Five-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.

FC $C \in$ ADO

BACnet is a registered trademark of ASHRAE.
ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products to the requirements of ASHRAE Standard 135 is the responsibility of BACnet International (BI). BTL is a registered trademark of BI.
Patents:

- US9819544B2 - US10073423B2
-EP3250970B1 - US9608538B2
-EP3139697B1 - CA2971061A1
- US9924243B2

nLight ECLYPSE ${ }^{\text {w }}$
System Controller

NECY												Example: NECY MVOLT BAC ENC	
Series	Voltage	BACnet		AutoDR		Visualization Software		Encl	sure	Wi-Fi	dapter	Options	
nECY nLight ECLYPSE	$\begin{array}{ll} \text { mVoLt } & 120-277 \\ & \text { VAC } \\ 347 & 347 \text { VAC } \end{array}$	[blank] BAC	Not Enabled BACnet/ IP \& MS/TP Enabled	[blank] ADR	Not Enabled Open ADR VEN	[blank] SVS ${ }^{1}$	Not Enabled Envysion	ENC	NEMA Type 1 metal enclosure	[blank] NW	Includes Wi-Fi Adapter No Wi-FI Adapter Included	[blank] SEP GFXK² $A l R^{3}$	None Single Ethernet Port Touchscreen interface (model nGWY2 GFX, mounted separately), PS 150 power supply, CAT5 cable Includes NECYD NLTAIR G2

ACCESSORIES	
nECY ENC	NEMA 1 Enclosure and pre-mounted 120-277VAC input, 24VDC output (Max 5OW) power supply
nECYD NLTAIR G2	nLight AIR wireless adapter nLight Interface module (introduces 750 device limit if added to an nECYEPL INTF ECLYPSE with AIR option) nECYUPG SVEA
nLight ECLYPSE License, adds support of up to 5 MODBUS devices ${ }^{4}$	

Notes

1. Requires $B A C$ net option.
2. If 347 voltage option is selected, includes PS150 347.
3. AIR option supports 150 devices. RJ45 ports for connecting nLight wired devices are not available with the AIR option. GFXK option is not available with AIR option.
4. SVEA license requires SVS and BAC licenses as prerequisites. See nLight ECLYPSE Replacement Parts Guide for more information.

SPECIFICATIONS

COMMUNICATION

Ethernet Connection Speed:	10/100 Mbps
Addressing:	IPv4 or Hostname
BACnet Profile:	BACnet Building Controller (B-BC)
BACnet Listing:	BTL, B-BC
BACnet Interconnectivity:	BBMD forwarding capabilities
	BACnet/P to BACnet MS/TP routing
BACnet Transport Layer:	MS/TP \& IP (optional)
Web Server Protocol:	HTML5
Web Server Application Interface:	REST API

nLight Network Interface Module

$$
\begin{aligned}
\text { Size: } & 4.74^{\prime \prime} \mathrm{H} \times 3.20^{\prime \prime} \mathrm{W} \times 2.31^{\prime \prime} \mathrm{D} \\
& (12.03 \mathrm{~cm} \times 8.12 \mathrm{~cm} \times 5.86 \mathrm{~cm}) \\
\text { Mounting: } & \text { DIN rail mounted } \\
\text { Ports: } & 3 \text { nLight bus ports (RJ-45) }
\end{aligned}
$$

nLight Bus Power Output: OmA per port

Power Supply Module (24V)

Size: $24 V$: $4.74^{\prime \prime} \mathrm{H} \times 2.85^{\prime \prime} \mathrm{W} \times 2.31^{\prime \prime} \mathrm{D}$
($12.03 \mathrm{~cm} \times 7.24 \mathrm{~cm} \times 5.86 \mathrm{~cm}$)
Operating Voltage: 24 V : $24 \mathrm{VAC} / D C ; \pm 15 \%$; Class 2 OutputVoltage, Rated Current \& Power: 24V: 18VDC regulated, 0-1.6A, 30W max

Enclosure

Type: NEMA 1 rated surface mount screw cover
Size: $14.25^{\prime \prime} \mathrm{H} \times 14.25^{\prime \prime} \mathrm{W} \times 4.00^{\prime \prime} \mathrm{D}(36.20 \mathrm{~cm} \times$ $36.20 \mathrm{~cm} \times 10.16 \mathrm{~cm})$
Rating: UL 2043 (Plenum) Rated
, Server Application Interface: REST API

Supported BACnet MS/TP and Modbus RTU Connectivity:

- BACnet MS/TP OR Modbus RTU $1 \times$ RS-485 serial communications ports
- Each RS-485 port supports one communication protocol at a time
- RS-485 Wiring - 1-pair + Common/shield
- RS-485 EOL Resistor - Built-in
- RS-485 Baud Rates - 9600, 19200, 38400, or 76800 bps
- RS-485 Addressing - Controller's Web Configuration Interface

Supported Wireless Connectivity:

- Wireless Adapter - USB Port Connection
- Wi-Fi Communication Protocol - IEEE 802.11b/g/n
- Wi-Fi Network Types - Client, Access Point, Hotspot

[^4]The nLight ECLYPSE serves as the backbone for nLight and nLight AIR digital lighting networks. The nLight ECLYPSE provides networked devices with schedule management and remote software programming via SensorView web-based software.The backbone also provides support for system-wide controls such as master override switches, automated demand response, and BACnet integration. One nLight ECLYPSE is capable of handling up to 750 total devices and up to 128 global channels for the entire network. The nLight ECLYPSE is also compatible with other Distech ECLYPSE products, offering a full suite of BAS capabilities.

ENVYSION
Lighting Control and Visualization

Space Utilization
Edge Application

SensorView Lighting Configuration

HVAC Integration with ECLYPSE and Third Party Controllers

Lighting Management and Control Through Web Applications

Connection with nLight Wired and nLight AIR Devices

EXAMPLE NLIGHT ECLYPSE NOMENCLATURE AND OPTIONS

Example Nomenclature	Connection to Wired Devices	Maximum of 150 Wireless Devices	Maximum of 750 Wireless Devices	All License Options Available (BAC, SVS, SVEA)
NECY MVOLT ENC	$\sqrt{ }$	No AIR Adapter	No AIR Adapter	$\sqrt{ }$
NECY MVOLTENC NECYD $\stackrel{+}{\text { NLTAIR G2 }}$	$\sqrt{ }$	Not Limited at 150	$\sqrt{ }$	$\sqrt{ }$
NECY MVOLT ENC AIR	No Wired Interface Module	$\sqrt{ }$	Reduced Capability	$\sqrt{ }$
NECY MVOLTENC AIR $\stackrel{+}{\text { NECYREPLY INTF }}$		Not Limited at 150		

Acuity Brands \| One Lithonia Way Conyers, GA 30012	Phone: 800.535 .2465	www.acuitybrands.com/nlight
© 2014-2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. $06 / 22 / 21$		NECY
3 of 3		

OVERVIEW

The nLight ${ }^{\oplus}$ AIR Adapter is used to connect an nLight AIR control system to the nLight ECLYPSE ${ }^{\oplus}$, enabling time-based configuration, remote programming, and control via BACnet, Automated Demand Response, and RESTful API. Using browser based software, users can control their wired and wireless nLight devices through a graphic floor plan, configure settings through the floor plan view or a tree view, and perform firmware updates.
The nLight AIR Adapter gives secure network capability to devices within a single space or across multiple spaces. A network of nlight AIR devices can be zoned, programmed, and controlled through an nLight ECLYPSE and Adapter with protection from nLight AIR's robust five-tier security framework.

FEATURES

- Enables wireless network control of up to 750 nLight AIR devices (per nLight AIR Adapter) in a single space or across multiple spaces
- Allows control of devices through SensorView software, BACnet commands, Automated Demand Response, and RESTful API
- Easy wiring through a USB connection to the nLight ECLYPSE.
- 5-tier security prevents unauthorized control of the wireless network.
- IP66 rating for indoor and outdoor use.
- Includes a 16 -foot cable, mounting bracket, and an optional extender for remote mounting.
- Supports web-based update of devices using SensorView software

Warranty

Five-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/customer-support/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.
nLight, nLight AIR and the Acuity Controls and Acuity Brands logos are trademarks of Acuity Brands. Bluetooth is a trademark of Bluetooth SIG, Inc. used by Acuity Brands under license. Apple and the Apple logo are trademarks of Apple Inc. Android and Google Play are trademarks of Google, Inc. Other trademarks are property of their respective owners.

nLight ${ }^{*}$ AIR Adarpter Wirelessly enobles nLight AIR devices to communicate with nLight ECLYPSE Controller

NECY	ORDERING INFORMATION				
Series	Gexamples: NECYD NLTAIR G2				
NECYD NLTAIR	Networked nLight AIR wireless adapter	G2 \quad Generation 2 compatibility			

Additional Accessories: Order as separate catalog number.
NECYD EXT150 USB to CAT6 extender to add up to 150 feet of length ${ }^{1,3}$

Notes:

1. USB extender requires 120 V . Wall adapter is included for connection closest to the NECYD NLTAIR G2. Requires use of CAT6 cable (provided by others). CAT5 and CAT5e cable should not be used with this product.
2. Wireless Range is subject to site-specific conditions. See nLight AIR Design Guide for more information.
3. The USB extender accessory is manufactured by CommFront. Five-year limited manufacturer warranty. Please reference www.acuitybrands.com/support/customer-support/terms-and-conditions regarding third party manufacturer warranty terms.
```
            Dimensions: 5"hx 1.62"lx 1.62"d
            Product Weight: 5.8 oz
            Trim Color: White
    Enclosure Material:Technomelt}\mp@subsup{}{}{TM}\mathrm{ (high performance thermoplastic polyamide)
            Max Humidity: 0-95% non-condensing
Operating Temperature: }-4\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to 65 C
            Mounting:Ceiling mount, wall mount, panel mount (with included bracket)
    Radio Frequency:Dual Radio: 900MHz & 2.4GHz
    RF Transmit Power: 900Mhz: up to 27 dBm
    2.4GHz: up to 10.4 dBm
    Wireless Standard: 900MHz: IEEE 802.15.4-based
    2.4GHz: Version 4.0+ of the Bluetooth specification
    Wireless Range: 1,000 ft line of sight, 150 ft range in standard indoor construction }\mp@subsup{}{}{2
            Connected nLight AIR devices support repeating broadcasts to increase initial broadcast range }\mp@subsup{}{}{2
        Security:Application Data Encryption: AES-128 bit
            Mutual Entity Authentication
            Message Confidentiality
            Message Authentication and Replay Prevention
            Limited Anonymity
            Complies with California Civil Code Title 1.81.26, Security of Connected Devices, approved under Senate Bill No. }327\mathrm{ (2018)
Regulatory Compliance: FCC: 2ADCB-RMODITHP,IC: 6715C-RMODITHP
            Safety: Canada & US UL Listed; RoHS Compliant
    Cable: 16 ft; not plenum rated
```


MECHANICAL AND MOUNTING DETAILS

The nECYD EXT150 is a rugged, industrialgrade USB 2.0 repeater/extender that can be used to extend the distance between an nLight ECLYPSE (nECY) and an nLight Air Adapter ($\mathbf{n E C Y D}$ NLTAIR G2) by up to $150 \mathrm{ft}(45 \mathrm{~m})$. The nECYD EXT150 works in pair (one transmitter and one receiver) to extend the distance over CAT6 cables.

OVERVIEW

The nLight® AIR rPODLA is a wireless, line-powered wall switch that provides a user with local control of a lighting zone. These single gang decorator style devices have soft-click buttons and a green LED indicator for each button. The rPODLA wall switches communicate with other nLight AIR devices via radio frequency (RF). A line-powered wall switch can work with any nLight AIR enabled fixture or power pack to provide toggle switch operation with multi-pole and preset scene control. Wall switches with the DX option have the added ability to adjust the level of any nLight AIR controlled dimmable light fixture or on/off/dimimng control of a single zone for preset scene switches.

FEATURES

- Communicates with nLight ${ }^{\oplus}$ AIR devices via radio frequency (RF) in the 900 MHz spectrum
- Soft-click push-button control with LED feedback upon press
- Remotely configurable/upgradeable
- Single pole or two pole on/off control with optional raise/lower option ("DX" option)
- 2 or 4 preset scene control fully configurable via CLAIRITY' ${ }^{\text {™ }}+$ mobile app
- Maximum of 4 total preset scenes per nLight AIR group
- Wireless multi location preset scene recall and on/off/dimming control

CUSTOM BUTTON ENGRAVING

- Custom lettering for units can be specified and ordered at: nGrave Form
- To ensure color uniformity, ordering templates facilitate specifying all buttons on a unit as custom lettered. Replacing single buttons not recommended
- Custom buttons will ship separately and require field installation

Warranty

Five-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.

SA+Capable

This item is an A+ capable component, which has been designed and tested to provide out-of-the-box luminaire compatibility with simple commissioning, when included as part of an A+ Certified ${ }^{\text {Tw }}$ Solution.
To learn more about A+, visit www.acuitybrands.com/aplus.
nLight, nLight AIR and the Acuity Controls and Acuity Brands logos are trademarks of Acuity Brands. Bluetooth is a trademark of Bluetooth SIG, Inc. used by Acuity Brands under license. Apple and the Apple logo are trademarks of Apple Inc. Android and Google Play are trademarks of Google, Inc. Other trademarks are property of their respective owners.

nEIGHT

nLight® AIR rPODLA: Wireless Line powered Woll Switches

Note: nLight ${ }^{8}$ AIR devices are only compatible with other nLight AIR enabled devices; and is not cross compatible with other nlight product lines at this time.

ORDERING INFORMATION

rPODLA			Example: RPODLA 2P DX MVOLT WH G2		
Series	Poles \& Scenes	Dimming Control	Voltage	Color	Generation
RPODLA	[blank] Single Pole 2P Two Pole $25 \quad$ Two Preset Scene Control 4S $\quad \begin{aligned} & \text { Four Preset } \\ & \text { Scene Control }\end{aligned}$	[blank] On/off Control DX On/off + Raise/Lower Control	$\begin{array}{ll} \text { MVOLT } & 120-277 \mathrm{VAC} \\ 347 & 347 \mathrm{VAC} \end{array}$	WH White IV Ivory AL Light Almond GY Gray RD Red BK Black	G2 Generation 2 Compatibility

All rPODLA switches are shipped with wall plates, however, the following order information is available to acquire replacement wall plates.

Wall Plate - Additional or Replacement					
Series	\# of Gangs	Color			Packaging
WS XPODA Wall Plates (Standard) SSW Sealed Covers	1 GNG Single Gang	WH White IV Ivory GY ${ }^{2}$ Gray	AL ${ }^{2}$ Light Almond BK 2 Black RD Red	VP ${ }^{2}$ Variety Pack	[blank] Single Unit ${ }^{3}$ M5 ${ }^{2}$ 5Pack M6 ${ }^{1,2} \quad 6$ Pack

| Accessories |
| :--- | :--- |
| RPODLA MOUNTRING Replacement mounting ring for rPODBA and rPODB switches |

1. Available only for variety pack.
2. Not available for SSW series
3. Single units only available for SSW series

WALL SWITCH CLEANING

It will occasionally be necessary to clean the wall switches. All rPODLA switches may be wiped down with a soft cloth or paper towel dampened with glass cleaner, vinegar and water, hydrogen peroxide, or a mild abrasive. Spray a limited amount on the cloth or paper towel prior to applying. Do not spray cleaner on the switches directly, and do not wipe the switches down with a towel saturated (drips when wrung out) with cleaner.
If the ability to clean the switches using chemical spray disinfectants is desired, we recommend the use of the Sealed Screwless Wall Plate (SSW). The Sealed Screwless Wall Plate is a cover for the standard wall plate, designed with an IP54 rating. It consists of a transparent silicone rubber layer that covers the wall switch to prevent liquids from entering the wall switch while maintaining a tactile button feel. The Sealed Screwless Wall Plate is the ideal solution to prevent liquids from entering the wall switch while maintaining a tactile button feel. The Sealed Screwless Wall Plate is the ideal solution to help protect a wall switch from fluid entering the device while enabling the use of disinfectants recommended by the EPA for use against SARS-CoV-2, the coronavirus that causes COVID-19, which often require spraying or saturating the surface..

For more information on the Sealed Screwless Wall Plates

SPECIFICATIONS

Dimensions 2.74 " H x 1.68 " W x 1.78 " D ($6.96 \mathrm{~cm} \times 4.27 \mathrm{~cm} \times 4.52 \mathrm{~cm}$)
Weight 4.25 oz
Mounting Single Gang Switch Box or Low Voltage Ring
Color White, Ivory, Lt. Almond, Gray, Red, Black
Operating Temperature OC to 60C (Indoor Use Only)
Relative Humidity Standard: 20 to 75% non-condensing
Input Power < 1 watt
Radio Frequency Dual Radio: $900 \mathrm{Mhz} \& 2.4 \mathrm{GHz}$
RF Transmit Power $900 \mathrm{Mhz}:+20 \mathrm{dBm} ; 2.4 \mathrm{GHz}$: Variable
Wireless Standard 900MHz: IEEE 802.15.4-based
2.4 GHz : Version $4.0+$ of the Bluetooth specification
Security Application Data Encryption: AES-128 bit
Mutual Entity Authentication
Message Confidentiality Message Authentication and Replay Prevention Limited Anonymity
Regulatory Compliance FCCID: 2ADCB-RMODIT3 IFETEL, RoHS
IC: 6715C-RMODIT3
IFETEL: RCPNLNL20-2057
Programming Tool CLAIRITY+ mobile app

DEFAULT LABELING

rPODLA $2 S$ 2 Preset Scene Control
rPODLA DX
On/Off + Raise/Lower
Control

rPODLA 2S DX 2 Preset Scene Control with On/Off/Raise/Lower

rPODLA 2P Two Pole On/Off Controls

rPODLA 4S 4 Preset Scene Control

rPODLA 2P DX
Two Pole On/Off + Two
Raise/Lower Controls

rPODLA 4S DX 4 Preset Scene Control with On/Off/Raise/Lower

WIRING

OVERVIEW

nLight AIR rPP power packs are designed to offer flexible control for commercial and industrial lighting applications. The rPP consists of a relay, $0-10 \mathrm{~V}$ dimming control, and a low voltage power supply output to power and wireless sensors. The rPP is capable of switching loads up to 20 A via a latching relay designed with robust inrush protection. Select power packs provide $+24 V D C$ low voltage output to power up to 4 nLight AIR mounted occupancy sensors and photocells. The nLight AIR rPP is designed for use as part of an nLight AIR group of devices or with the nLight ECLYPSE ${ }^{\text {M }}$.

POWER PACK FEATURES

- On/Off and dimming control of a luminaire or group of luminaires
- 24VDC output to power up to 4 nLight AIR rCMS low voltage sensors or other low voltage devices
- Suitable for plug load control
- UL 924 listed options for simplified lighting control on emergency lighting circuits
- Power Monitoring with Current Measurement $+/-3 \%$ accuracy

INSTALLATION FEATURES

- Wireless communication enables simple retrofits - no communication wires to pull between devices
- Chase nipple or side output dimming options
- UL 2043 listed for plenum applications
- An optional external antenna (CP option) for meeting code specific requirements or IP-rated applications
- Simple app-based configuration of space behaviors

ADVANCED WIRELESS FEATURES

- Devices intercommunicate to provide grouped-response to motion and on/off and dimming response to daylight conditions when wirelessly connected to a motion or daylight sensor, or on/of/dimming when connected to a wireless switch
- Fully compatible with other nLight AIR devices on the site
- Easy to integrate with the nLight ECLYPSE, which provides site-wide lighting control through nLight's SensorView software and provides optional BMS integration
- Comprehensive wireless security

Warranty

Five-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. Specifications subject to change without notice.

nLight, nLight AIR and the Acuity Controls and Acuity Brands logos are trademarks of Acuity Brands. Bluetooth is a trademark of

 Bluetooth SIG, Inc. used by Acuity Brands under license. Apple and the Apple logo are trademarks of Apple Inc. Android and Google Play are trademarks of Google, Inc. Other trademarks are property of their respective owners.DesignLights Consortium ${ }^{\circledR}$ (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified.

nLight® AIR rPP20 Power/Relay Pack

Territory Compliance	Voltage	Power Monitoring	Generation
$[b l a n k]$ None Cblank $]^{4}$ $120-277 \mathrm{~V}$ [blank] None G2 CP 3 Chicago Plenum UVOLT 4 $120-480 \mathrm{~V}$ IM \quad Current Monitoring			

	Notes
ACCESSORIES	1. Can provide normal power sensing information to nLight AIR devices with EM option. See the UL 924 Response section for more information. 2. EM option requires an nLight AIR device connected to normal power for wireless normal power detection. See the UL 924 Response section for more information. 3. Not available with UVOLT model.
NPP FUSE J10 Replacement Fuse	

Size: 3.50 " $\times 3.52^{\prime \prime} \times 1.82$ " ($120-277 \mathrm{~V}$ model) $4.725^{\prime \prime} \times 4.80$ " $\times 1.865^{\prime \prime}$ (UVOLT model)
Weight: $60 z$
Mounting: 1/2" Knockout
Color: White (standard), Red (ER \& EM)
Humidity: 5 to 95% non-condensing
Location: Damp Location Rating
Wires: Line and load 12 AWG stranded
Neutral, ground, and power sense (ER version) 18
AWG stranded
$0-10 \mathrm{~V}, 20$ AWG stranded
Operating Voltage: 120-277VAC, 120-480VAC (UVOLT)
Relay type: Latching
Frequency: $50 / 60 \mathrm{~Hz}$
Current Monitoring: MVOLT versions include automatic voltage detection for power calculation. HVOLT versions require user input of voltage via SensorView to calculate power Minimum Current required to ensure + /- 3% Accuracy MVOLT - 425 mA
UVOLT - 625 mA

```
        DC OutputTerminals:Push-in Terminals, solid or tinned 16-20AWG
DC Output Voltage/Current: 24 VDC,100 mA max output
            0-10V Dimming:Sinks 150mA; 0-10VDC dimmable ballasts or LED
                        drivers;
                            Radio Frequencies: }900\textrm{MHz}\mathrm{ up to +20dBM, 2.4 GHz up to + 10 dBM
                            Wireless Standard: 900 MHz: IEEE 802.15.4-based; 2.4 GHz: Version
                        4.0+ of the Bluetooth specification
        Security: Application Data Encryption AES-128 bit,Mutual
        Entity Authentication,Message Confidentiality,
        Message Authentication and Replay Prevention,
        Limited Anonymity
        Complies with California Civil Code Title 1.81.26,
        Security of Connected Devices, approved under
        Senate Bill No. }327\mathrm{ (2018)
    Regulatory Compliance: FCC ID: 2ADCB-RMODIT3
        IC: 6715C-RMODIT3
        IFETEL: RCPNLNL2O-2057
        cUlus
        RoHS
```

Temperature and Load Ratings

Model	$\mathbf{\text { rPP20 (-10 to 50 C) }}$		rPP20 (-10 to 60 C)							rPP20 UVOLT (-10 to 70C)			
Voltage	120 VAC	277 VAC	120 VAC	277 VAC	120 VAC	277 VAC	347 VAC	480 VAC					
General Purpose	20 A	20 A	5 A	5 A	20 A	20 A	20 A	5 A					
Tungsten	20 A	20 A	5 A	5 A	20 A	20 A	20 A	5 A					
Standard Ballast	20 A	20 A	5 A	5 A	20 A	20 A	20 A	5 A					
Electronic Ballast	16 A	16 A	5 A	5 A	16 A	16 A	16 A	5 A					
Motor	1.5 HP	$3 / 4 \mathrm{HP}$	$1 / 2 \mathrm{HP}$										

WIRING (Do not wire hot)

WIRING FOR EMERGENCY (-ER) UNITS

UL 924 Response - nLight AIR Devices with EM Option

The below information applies to all nLight AIR devices with an EM option.

- EM devices will remain at their high-end trim and ignore wireless lighting control commands, unless a normal-power-sensed (NPS) broadcast is received at least every 8 seconds.
- Using the CLAIRITYTM + mobile app, EM devices must be associated with a group that includes a normal power sensing device to receive NPS broadcasts.
- Only non-emergency rPP20, rLSXR, rSBOR, rSDGR, and nLight AIR luminaires with version 3.4 or later firmware can provide normal power sensing for EM devices. See specification sheets for control devices and luminaires for more information on options that support normal power sensing.

DIMENSIONS

Appendix H :

Wireless Lighting Control Plan

[^0]: Requirement Applies to: \checkmark New Construction \checkmark Major Modernizations Capital Improvement Projects

[^1]: *Generic 0-10V Dimming to 10\%.

[^2]: L/THONIA L/GHTING

[^3]: * For 90CRI, reduce lumen output by 17.1%
 ** For WD reduce output by 4.7%, PGD reduce output by 5.4%
 *** For HVOLT use scale factor in HVOLT SCALE FACTOR TABLE

[^4]: Acuity Brands | One Lithonia Way Conyers, GA 30012 Phone: 800.535.2465 www.acuitybrands.com/nlight
 NECY
 © 2014-2021 Acuity Brands Lighting, Inc. All rights reserved. Rev. 06/22/21

