This guide and the associated design, construction and operations standards on which it is based were developed with the thoughtful efforts and contributions of the following parties:

AUTHORING AGENCIES:
NYC School Construction Authority
NYC Department of Education

CONTRIBUTING CONSULTANTS:
Dattner Architects – Architecture/Sustainability Consultant
Vridian Energy and Environmental, LLP – Energy Modeling
DVL Consulting Engineers – Mechanical/Electrical/Plumbing Engineer
Robert Schwartz and Associates – Specification Consultant
Ysrael A. Seinuk PC – Structural Engineer
Accu-Cost Construction Consultants, Inc. – Cost Consultant
Ostergaard Acoustical Associates – Acoustic Consultant
Wojciechowski Design – Graphics Design Consultant

ADDITIONAL CONTRIBUTIONS:
Special thanks to the Office of Mayor Michael R. Bloomberg and the Mayor’s Office of Environmental Coordination for their input and support in the continuation of the guide.
This guide was developed based on materials from:

United States Green Building Council (USGBC), Washington, DC
These guidelines are adapted in part from and with the permission of the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) Green Building Rating System® for new construction, LEED for Schools 2009. References to LEED are incorporated in this guide because LEED is the most widely used nationally accepted green standard and because the USGBC provides many resources, including its reference guides, to support the design and construction of green buildings. The New York City School Construction Authority would like to acknowledge its appreciation to the USGBC for their national and international efforts and leadership in the promotion of green building design, operation and practices.

These guidelines are adapted, in part, from the CHPS Best Practices Manual by permission of the Collaborative for High Performance Schools, Inc. References to CHPS are incorporated in the guide because CHPS specifically addresses needs of schools and contains credits for district-wide school policies. The CHPS Best Practices Manual is copyrighted by CHPS, Inc. End users of the Best Practices Manual content are permitted to use and copy the content without further consent. However, prior permission from CHPS, Inc., must be granted in order to relicense, publish or develop derivative works from CHPS-copyrighted materials.

NY-CHPS – Version 1.0, High Performance Schools Guidelines
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... i

TABLE OF CONTENTS... iii

RATING SYSTEM SUMMARY... 1

1.0 INTRODUCTION... 3

1.1 LL86/05 Requirements for Schools
1.2 NYC Green Schools Rating System
1.3 A LEED® Based System
1.4 Reducing the Cost and Complexity of Sustainability in Schools
1.5 LL86/05 Energy and Water Conservation Compliance
1.6 NYC Green Schools Rating System - Enhancement Credits
1.7 NYC Green Schools Rating System - Required Credits
1.8 Abbreviations List

2.0 USER GUIDE.. 13

2.1 Design Phase Certification Process
2.2 Construction Phase Certification Process
2.3 Commissioning
2.4 Certification Process
2.5 Third Party Audit of Projects
2.6 Certification Process Diagram

3.0 LL86/05 COMPLIANCE AND REPORTING.. 21

3.1 LEED Compliance or Equivalency
3.2 LEED-NC Version 2.1 Energy Cost Reduction Modeling
3.3 LEED-NC Version 2.2 and 2009 Energy Cost Reduction Modeling
3.4 LL86/05 Annual Reporting Requirements
3.5 Updating The NYC Green Schools Guide

4.0 GREEN SCHOOLS RATING SYSTEM.. 27

Site Credits - Section S.. 29
Water Credits - Section W.. 61
Energy Credits - Section E... 71
Materials Credits - Section M... 93
Indoor Environmental Quality Credits - Section Q.. 111
Regional Priority Credits - Section R.. 153
Additional Credits - Section A.. 157

5.0 FORMS... 175
NYC Green Schools Guide Rating System Summary

Credit Category

Site (19 Points)

<table>
<thead>
<tr>
<th>Credit</th>
<th>Reference</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS Pr 1</td>
<td>S 1.1R</td>
<td>Construction Activity Pollution Prevention</td>
<td>NP</td>
</tr>
<tr>
<td>SS 1</td>
<td>S 1.2R</td>
<td>Site Selection</td>
<td>1</td>
</tr>
<tr>
<td>1.1.7</td>
<td>S 1.3</td>
<td>Sustainable Site & Building Layout</td>
<td>NP</td>
</tr>
<tr>
<td>SS 10</td>
<td>S 1.5R</td>
<td>Joint Use of Facilities, Community Access</td>
<td>4</td>
</tr>
<tr>
<td>SS Pr 2</td>
<td>S 1.6R</td>
<td>Environmental Site Assessment</td>
<td>NP</td>
</tr>
<tr>
<td>SS 3</td>
<td>S 1.7</td>
<td>Brownfield Redevelopment</td>
<td>1</td>
</tr>
<tr>
<td>SS 4.1</td>
<td>S 2.1</td>
<td>Alternative Transportation, Public Transportation Access</td>
<td>4</td>
</tr>
<tr>
<td>SS 4.2</td>
<td>S 2.2</td>
<td>Alternative Transportation, Bicycle Storage & Changing Rooms</td>
<td>1</td>
</tr>
<tr>
<td>SS 4.3/4.4</td>
<td>S 2.3R</td>
<td>Alternative Transportation, Fuel-Efficient Vehicles/Parking Capacity</td>
<td>2</td>
</tr>
<tr>
<td>SS Pr 3</td>
<td>S 3.1</td>
<td>Site Development, Protect or Restore Habitat</td>
<td>1</td>
</tr>
<tr>
<td>SS 5.1</td>
<td>S 3.2</td>
<td>Site Development, Maximize Open Space</td>
<td>1</td>
</tr>
<tr>
<td>SS Pr 2</td>
<td>S 4.1</td>
<td>Stormwater Design</td>
<td>1</td>
</tr>
<tr>
<td>SS 7.2</td>
<td>S 5.1R</td>
<td>Heat Island Effect</td>
<td>1</td>
</tr>
<tr>
<td>SS Pr 2</td>
<td>S 6.1R</td>
<td>Outdoor Lighting</td>
<td>1</td>
</tr>
<tr>
<td>SS 8</td>
<td>S 6.1R</td>
<td>Light Pollution Reduction</td>
<td>1</td>
</tr>
</tbody>
</table>

Water (8 Points)

Outdoor Systems	WE 1.1	Water Efficient Landscaping, Reduce by 50%	2
WE 1.1	W 1.1	Water Efficient Landscaping, No Potable Water Use or Irrigation	2
WE Pr 1	W 2.1R	Minimum Water Use Reduction, 20% Reduction	NP
WE 3	W 2.2	Enhanced Water Use Reduction, 30% Reduction	2
WE 3	W 2.3	Enhanced Water Use Reduction, 35% Reduction	1
WE 3	W 2.4	Enhanced Water Use Reduction, 40% Reduction	1

Energy (7 Points)

Commissioning	EA Pr 1	E 1.1R	Fundamental Commissioning of the Building Energy Systems	NP
EA 3	E 1.2R	Enhanced Commissioning	2	
Refrigerant Management	EA Pr 3	E 2.1R	Fundamental Refrigerant Management	NP
EA 4	E 2.2	Enhanced Refrigerant Management	2	
Verification	EA 5	E 3.1R	Measurement & Verification	1
Energy Efficiency	3.3.5	E 3.2R	Energy Management System Controls, HVAC & H. W. Systems	NP
Power	EA Pr 2	E 4.1R	Minimum Energy Performance	NP
3.1.2	E 4.2R	HVAC System Sizing, Avoid Oversizing	NP	
3.1.2	E 5.1R	Green Power	2	

Materials (10 Points)

Efficient Material Use	MR Pr 1	M 1.1R	Storage & Collection of Recyclables	NP
MR 1	M 1.2	Building Reuse, Maintain 75% of Existing Walls, Floors & Roof	1	
MR 1	M 1.3	Building Reuse, Maintain 95% of Existing Walls, Floors & Roof	1	
MR 1.2	M 1.4	Building Reuse, Maintain 50% of Interior Non-Structural Elements	1	
MR 2	M 1.5	Construction Waste Management, Divert 90% from Disposal	1	
MR 1	M 1.6	Construction Waste Management, Divert 75% from Disposal	1	
MR 2	M 1.7	Construction Waste Management, Divert 95% from Disposal	1	
MR 4	M 2.1R	Recycled Content, 10% (post-consumer + ½ pre-consumer)	1	
MR 4	M 2.2	Recycled Content, 20% (post-consumer + ½ pre-consumer)	1	
MR 5	M 2.3	Regional Materials, 10% Extracted, Processed & Manufactured	1	
MR 5	M 2.4	Regional Materials, 20% Extracted, Processed & Manufactured	1	
MR 5	M 2.5R	Regional Materials, 50% Extracted, Processed & Manufactured	1	
MR 5	M 2.6R	Low-Mercury Lighting, Reduce Mercury Waste	NP	

Sustainable Materials

MR Pr 1	M 1.1R	Storage & Collection of Recyclables	NP
MR 4	M 2.2	Recycled Content, 20% (post-consumer + ½ pre-consumer)	1
MR 5	M 2.4	Regional Materials, 20% Extracted, Processed & Manufactured	1
MR 5	M 2.5R	Regional Materials, 50% Extracted, Processed & Manufactured	1
MR 5	M 2.6R	Low-Mercury Lighting, Reduce Mercury Waste	NP

Credits with Points Required for all Projects

Site Category Sub-Total	3NP 5 14 0
Water Category Sub-Total	1NP 0 8 9
Energy Category Sub-Total	5NP 5 2 9
Materials Category Sub-Total	3NP 2 8 9
Indoor Environmental Quality (17 Points)

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>LEED® Reference</th>
<th>Credit Description</th>
<th>Required if Feasible</th>
<th>Optional Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEO Pr 1</td>
<td>Q.1.R</td>
<td>Minimum IAQ Performance</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>IEO 2</td>
<td>Q.1.R</td>
<td>Increased Ventilation (included in Q.1.1R credit language)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 1</td>
<td>Q.1.R</td>
<td>Outdoor Air Delivery Monitoring</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 3.1</td>
<td>Q.2.R</td>
<td>Construction IAQ Management Plan, During Construction</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 3.2</td>
<td>Q.2.R</td>
<td>Construction IAQ Management Plan, Before Occupancy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 4.1</td>
<td>Q.3.1.R</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 4.2</td>
<td>Q.3.2.R</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 4.3</td>
<td>Q.3.3.R</td>
<td>Low-Emitting Materials, Flooring Systems</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 4.4</td>
<td>Q.3.4.R</td>
<td>Low-Emitting Materials, Comp Wood & Agrifiber Products</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 5</td>
<td>Q.4.1.R</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.3.5</td>
<td>Q.4.2.R</td>
<td>Electric Ignition Stoves</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>6.2.4</td>
<td>Q.4.3.R</td>
<td>Provide HEPA Vacuums</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>IEO 6.1</td>
<td>Q.5.1.R</td>
<td>Controllability of Systems, Lighting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 6.2</td>
<td>Q.5.2.R</td>
<td>Controllability of Systems, Thermal Comfort</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 7.1</td>
<td>Q.6.1.R</td>
<td>Thermal Comfort, Design</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 8.1:</td>
<td>Q.7.1</td>
<td>Daylight & Views, Daylight 75% of Classrooms</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 8.1:</td>
<td>Q.7.2</td>
<td>Daylight & Views, Daylight for 90% of Classrooms</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 8.1:</td>
<td>Q.7.3</td>
<td>Daylight & Views, Daylight for 75% of Other Spaces</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 8.2:</td>
<td>Q.7.4</td>
<td>Daylight & Views, Visual Performance, Artificial Direct-Indirect Lighting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO Pr 3</td>
<td>Q.8.1.R</td>
<td>Minimum Acoustical Performance</td>
<td>NP</td>
<td></td>
</tr>
<tr>
<td>IEO 9</td>
<td>Q.8.2</td>
<td>Acoustic Windows</td>
<td>NP</td>
<td></td>
</tr>
</tbody>
</table>

IEQ Category Sub-Total: **13** **4** **0**

Regional (4 Points)

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>LEED® Reference</th>
<th>Credit Description</th>
<th>Required if Feasible</th>
<th>Optional Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 1.1</td>
<td>R.1.1</td>
<td>Regionally Defined Credit Achieved</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RP 1.2</td>
<td>R.1.2</td>
<td>Regionally Defined Credit Achieved</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RP 1.3</td>
<td>R.1.3</td>
<td>Regionally Defined Credit Achieved</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RP 1.4</td>
<td>R.1.4</td>
<td>Regionally Defined Credit Achieved</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Regional Category Sub-Total: **0** **4** **0**

Additional Credits (23 Points)

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>LEED® Reference</th>
<th>Credit Description</th>
<th>Required if Feasible</th>
<th>Optional Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 2</td>
<td>A.1.1.R</td>
<td>LEED® Accredited Professional</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SS 7.1</td>
<td>A.2.1</td>
<td>Heat Island Effect, Non-Roof</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SS 6.1.2</td>
<td>A.2.2</td>
<td>Stormwater Design, Quantity Control</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EA 1</td>
<td>A.3.1</td>
<td>Optimize Energy Performance</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>EA 2</td>
<td>A.3.2</td>
<td>On-site Renewable Energy</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>IEO 4.5</td>
<td>A.4.1</td>
<td>Low-Emitting Materials, Furniture</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IEO 4.6</td>
<td>A.4.2</td>
<td>Low-Emitting Materials, Ceilings and Wall Systems</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ID 3</td>
<td>A.5.1</td>
<td>The School Building as a Teaching Tool</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Additional Category Sub-Total: **1** **0** **22**

NYC GSG: Requires that all credits which are feasible be attempted and has been deemed equivalent to LEED for Schools 2009.

<table>
<thead>
<tr>
<th>NYC Green Schools Rating System</th>
<th>Credits Required for all Projects (with no point value)</th>
<th>Credits Required for all Projects</th>
<th>Credits Required if Feasible</th>
<th>Optional Credits</th>
<th>Total Number of Available Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totals</td>
<td>18NP</td>
<td>26</td>
<td>40</td>
<td>22</td>
<td>88</td>
</tr>
</tbody>
</table>
Local Law 86/05 was enacted into law by the New York City Council in late 2005, establishing a demanding set of sustainable standards for public construction projects in New York City. This local law makes New York City one of the first and largest school districts in the nation to have sustainable school design, construction and operations guidelines required by law.

Sustainable school design and operation provides many benefits to students, school staff and the city as a whole. Sustainable schools:

- Conserve energy
- Reduce operating costs
- Promote a healthy environment
- Teach environmental responsibility
- Demonstrate commitment to sustainability

The New York City School Construction Authority (SCA), with the New York City Department of Education (DOE), have created the NYC Green Schools Rating System to guide the sustainable design, construction and operation of new schools, modernization projects and school renovations and to achieve compliance with Local Law 86/05. This rating system is based on the LEED® (Leadership in Energy and Environmental Design) Green Building Rating System™, which was developed by the US Green Building Council (USGBC). The NYC Green Schools Rating System includes enhancements beyond LEED-based on best practices for schools adopted from the Collaborative for High Performing Schools (CHPS) rating systems developed by the states of Washington, Massachusetts and New York and also on SCA best practices.

1.1 LL86/05 REQUIREMENTS FOR SCHOOLS

LEED/GREEN BUILDING STANDARD CERTIFICATION

LL86/05 requires all New York City funded new schools, additions, and substantial reconstruction projects with construction budgets greater than $2M, to be “designed and constructed to comply with green building standards not less stringent than standards to achieve a LEED certified or higher rating.” Substantial reconstruction projects include reconstruction/rehabilitation of at least two of the three major systems (electrical, HVAC and plumbing) and the work must affect at least fifty percent (50%) of the building’s floor area. This would typically not include school Capital Improvement Program projects because these projects are smaller in scope.

The SCA/DOE had chosen to develop an independent sustainable design rating system to certify sustainability of applicable public school projects, as allowed by LL86/05.

GSG-2007 - Based on careful consideration of the analysis and conclusions of an independent review dated March 12, 2007, of the NYC Green Schools Guide (2007), the Director of the Office of Environmental Coordination, on behalf of the Mayor, found that the SCA’s NYC Green Schools Rating System to be no less stringent than LEED New Construction, version 2.2, for the achievement of a LEED certified rating.

GSG-2009 - As per rules promulgated by the City, on June 26, 2009, LEED version 3 2009 became the standard required to comply with LL86/05. The SCA/DOE has revised their NYC GSG to comply with this new standard and is now known as NYCGSG-2009.
ENERGY COST REDUCTION

LL86/05 requires all capital school projects with construction budgets greater than $12 M to reduce energy costs by at least 20% compared to the baseline referenced in LEED for Schools 2009/EA Credit 1 or the NYCECC, whichever is more stringent.

An additional 5% or 10% energy cost savings beyond the 20% mandate must be implemented, unless the payback on the investment exceeds 7 years.

WATER USE REDUCTION

LL86/05 requires all capital projects involving the installation or replacement of plumbing fixtures (where that work has a construction budget greater than $0.5M) to reduce potable water consumption by a minimum of 30% compared to the baseline criteria referenced in LEED for Schools 2009 /WE Credit 3 or a minimum of 20% if waterless urinals are not approved by the NYC Department of Buildings. This requirement would apply to new schools, substantial reconstruction projects and Capital Improvement Program projects.

SELECTED CAPITAL RENOVATION PROJECTS

LL86/05 has special sustainable requirements for selected “capital renovation projects.” These are projects that are more limited in scope than a new school, addition, or substantial reconstruction and they do not require LEED certification or the equivalent. The SCA refers to these projects as Capital Improvement Program projects. The sustainable requirements for these projects are not addressed by this guide but are incorporated in the SCA Design Requirements, Standard Specifications and Standard Details. For general reference, a summary of these requirements follows below.

- Projects involving boiler replacement with construction budgets greater than $2M, or lighting replacement with construction budgets greater than $1M, must reduce energy costs by a minimum of 10% compared to the baseline criteria in the more stringent of LEED for Schools 2009/EA Credit 1 or the NYS Energy Code.
- Projects involving HVAC comfort controls replacement with construction budgets greater than $2M must reduce energy costs by a minimum of 5% as compared to the baseline criteria referenced in LEED for Schools 2009/EA Credit 1 or the NYS Energy Code, whichever is more stringent.
- Projects involving installation or replacement of plumbing fixtures with construction budgets greater than $0.5M must reduce potable water consumption by a minimum of 30% compared to the baseline criteria referenced in LEED for Schools 2009 /WE Credit 3 or by a minimum of 20% if waterless urinals are not approved by the NYC Department of Buildings.

1.2 NYC GREEN SCHOOLS RATING SYSTEM

The NYC Green Schools Rating System:
- Establishes sustainable building guidelines that allows projects to achieve sustainable standards equivalent to those established for a LEED for Schools 2009 certified or higher rating,
- Addresses specific sustainable issues in the design, construction and operation of New York City public school buildings.
- Reduces the cost and complexity of sustainability for schools.
- Incorporates the energy and water conservation requirements mandated by LL86/05.
- Includes betterment practices specific to schools and to NYC school construction and operation.
While LL86/05 requires that 50% of applicable projects apply for sustainable certification, the SCA and DOE plan to exceed the LL86/05 requirements by requiring certification under its system for all applicable projects.

1.3 A LEED®-BASED SYSTEM

The original reason the SCA and DOE had chosen to create a sustainable rating system for New York City Schools is that the LEED rating system was not school specific; LEED was originally created by the USGBC to address a wide variety of building types including commercial, office, retail, institutional and residential. The USGBC has sub-sequentially developed a LEED application guide for schools.

The SCA continues to believe that the students, staff and general public will better served by adopting sustainable standards specifically developed for NYC public school buildings. The rating system that the SCA and DOE have developed has been determined to be no less stringent than LEED for Schools 2009 for the achievement of a LEED® Certified rating. This newly developed system is an adaptation of the award-winning “NYC Green Schools Guide”.

The SCA and DOE determined which LEED credits to incorporate or omit by following a detailed process of developing a compliant scope of work for each credit and estimating the cost of compliance for different sizes and types of schools. Credits were selected for inclusion in the NYC Green Schools Rating System based on appropriateness of each credit to be required as a standard for New York City public schools, cost considerations and environmental benefit. There is a focus in the Green Schools Rating System on indoor environmental quality, which includes approximately one – third of the credits.

An example of an omitted credit is the LEED prerequisite prohibiting smoking, which was omitted to reduce documentation and review of a requirement that is already mandated by local law.

110 Possible Points Total
40-49 for Certification

88 Possible Points Total
40-49 for Certification

<table>
<thead>
<tr>
<th>LEED for Schools 2009</th>
<th>NYC Green Schools Rating System 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innovation (4%)</td>
<td>Additional (26%)</td>
</tr>
<tr>
<td>Regional (4%)</td>
<td>Regional (5%)</td>
</tr>
<tr>
<td>Indoor Environmental Quality (19%)</td>
<td>Indoor Environmental Quality (20%)</td>
</tr>
<tr>
<td>Materials (12%)</td>
<td>Materials (11%)</td>
</tr>
<tr>
<td>Energy (30%)</td>
<td>Energy (8%)</td>
</tr>
<tr>
<td>Water (10%)</td>
<td>Water (9%)</td>
</tr>
<tr>
<td>Site (21%)</td>
<td>Site (21%)</td>
</tr>
</tbody>
</table>
1.4 REDUCING THE COST AND COMPLEXITY OF SUSTAINABILITY IN SCHOOLS

Because of the high volume of construction in a narrow programmatic building type, New York City public school design has historically been based on design standards. The SCA continues that approach by using standards that have been carefully researched and refined to provide well-planned, durable, cost-effective schools. The SCA standards cover all aspects of school design from architectural planning to specific MEP systems. These standards include Design Requirements, Standard Specifications, Standard Detail Drawings and Standard Room Layouts. It is important to the SCA’s mission to standardize the approach to sustainability in order to contain costs, maintain aggressive project delivery schedules and to direct Design Teams in a systematic and efficient manner.

The SCA has developed revised standards that incorporate the requirements of the NYC Green Schools Rating System. Affected standards for each credit are referenced in this guide.

1.5 LL86/05 ENERGY AND WATER CONSERVATION COMPLIANCE

The SCA/DOE conducted extensive energy modeling and water use reduction calculations to explore cost – effective options for complying with the LL86/05 energy and water conservation requirements. A wide range of energy conservation measures were studied using prototypical school building models for each type of school building, from early childhood center through high school, and additions. Modeling for each system evaluated was conducted using ASHRAE 90.1-2004 with Appendix G, as required by the NYS ECCC and as required by ASHRAE 90.1-2007 LEED for Schools 2009. Parametric studies were done to confirm that results continued to apply as various site and design factors changed. The SCA selected standard energy conservation measures for schools is based on these prototypical modeling studies.

1.6 NYC GREEN SCHOOLS RATING SYSTEM - ENHANCEMENT CREDITS

During the process of developing the NYC Green Schools Rating System, each LEED credit was evaluated for applicability to New York City schools. Other state guidelines for sustainable schools were reviewed for best practices to be incorporated in the NYC Green Schools Rating System. Based on this "best practices" review, the SCA/DOE incorporated many prerequisites and credits from Collaborative for High Performing Schools (CHPS) rating systems. The SCA/DOE also referenced selected requirements from CHPS credits that were incorporated into LEED-based credits to make SCA credits more stringent or more appropriate for schools. One example is the inclusion of mold prevention measures into the LEED-based credit for indoor air quality during construction.

The SCA/DOE considered adopting NY-CHPS as a standard but chose not to do so for several reasons, including the fact that many credits as written did not apply to New York City requirements. The SCA/DOE determined that basing the system directly on LEED would facilitate demonstration of equivalency as required by LL86/05.
Enhancement credits based on the SCA’s experience with New York City public schools are also included in the rating system.

1.7 NYC GREEN SCHOOLS RATING SYSTEM – REQUIRED CREDITS

The NYC Green Schools Rating System has more requirements and fewer options than LEED. It includes credits based on 9 of the 10 LEED prerequisites and 88 of the 110 LEED credits. In addition to reducing the number of credits, the NYC Green Schools Rating System has created a more directed system by instituting “required credits.” In LEED and CHPS, the only required credits are prerequisites, whereas in this rating system all credits (except the 22 optional credits) are required, if they are possible given the constraints of a specific project. Credits based on LEED prerequisites and CHPS prerequisites and credits have no point value in the NYC Green Schools Rating System 2009 to make the system easily comparable to other rating systems.

The SCA/DOE rating system makes a distinction between two types of required credits:

“Required for all” credits must be achieved by all applicable projects. This category includes 26 LEED-based credits, though there may be an occasional project unable to comply with a “Required for All” LEED-based credit. All projects are required to achieve at least 40 points of the LEED-based credits included in the NYC Green Schools Rating System to achieve system equivalency.

“Required if feasible” credits are credits that projects must comply with unless the Design Team provides an acceptable explanation of why that credit cannot be achieved and this is accepted and approved by the SCA. All projects are required to comply with these credits if possible, unless site constraints, programmatic requirements or extraordinary costs do not permit compliance. An example of a required if feasible credit is the LEED-based credit for Building Reuse. This credit would be pursued by modernization and renovation projects, but is not available to new building projects.
1.8 Abbreviation List

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEEE</td>
<td>American Council for an Energy Efficient Economy</td>
</tr>
<tr>
<td>A/E</td>
<td>Architect/Engineer (typically A/E of Record)</td>
</tr>
<tr>
<td>ASHRAE</td>
<td>American Society of Heating, Refrigerating and Air-Conditioning Engineers</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society of Testing and Materials</td>
</tr>
<tr>
<td>BCC</td>
<td>Building Code Compliance</td>
</tr>
<tr>
<td>BMP</td>
<td>Best Management Practice</td>
</tr>
<tr>
<td>BMS</td>
<td>Building Management System</td>
</tr>
<tr>
<td>BPS</td>
<td>Best Practice Standards</td>
</tr>
<tr>
<td>CBECs</td>
<td>Commercial Buildings Energy Consumption Survey</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorcarbons</td>
</tr>
<tr>
<td>CGP</td>
<td>Construction General Permit</td>
</tr>
<tr>
<td>CHPS</td>
<td>Collaborative for High Performing Schools</td>
</tr>
<tr>
<td>CI</td>
<td>Corporate Interiors (typically LEED-CI)</td>
</tr>
<tr>
<td>CID</td>
<td>Construction Inspection Division</td>
</tr>
<tr>
<td>CIR</td>
<td>Credit Interpretation Ruling (from USGBC)</td>
</tr>
<tr>
<td>CMU</td>
<td>Concrete Masonry Unit</td>
</tr>
<tr>
<td>CRI</td>
<td>Carpet and Rug Institute</td>
</tr>
<tr>
<td>CxA</td>
<td>Commissioning Agent</td>
</tr>
<tr>
<td>DEC</td>
<td>NYC Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEP</td>
<td>NY State Department of Environmental Protection</td>
</tr>
<tr>
<td>DOE</td>
<td>NYC Department of Education</td>
</tr>
<tr>
<td>DOT</td>
<td>NYC Department of Transportation</td>
</tr>
<tr>
<td>DSF</td>
<td>Division of School Facilities</td>
</tr>
<tr>
<td>DSNY</td>
<td>NYC Department of Sanitation</td>
</tr>
<tr>
<td>EA</td>
<td>Effective Aperture</td>
</tr>
<tr>
<td>ECC</td>
<td>Early Childhood Center</td>
</tr>
<tr>
<td>ECM</td>
<td>Energy Conservation Measure (ECM)</td>
</tr>
<tr>
<td>EEM</td>
<td>Energy Efficiency Measure</td>
</tr>
<tr>
<td>EP</td>
<td>Exemplary Performance</td>
</tr>
<tr>
<td>ETV</td>
<td>Environmental Technology Verification</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>F&E</td>
<td>Furniture and Equipment (typically SCA/F&E Unit)</td>
</tr>
<tr>
<td>FID</td>
<td>Facilities Inspection Division (refer to BCC & CID)</td>
</tr>
<tr>
<td>FIRM</td>
<td>Flood Insurance Rate Maps</td>
</tr>
<tr>
<td>FMSI</td>
<td>Facilities Management System Integrator</td>
</tr>
<tr>
<td>FSC</td>
<td>Forestry Stewardship Council</td>
</tr>
<tr>
<td>GBCI</td>
<td>Green Building Certification Institute</td>
</tr>
<tr>
<td>HCFC</td>
<td>Hydrochlorofluorocarbons</td>
</tr>
<tr>
<td>HEPA</td>
<td>High – Efficiency Particulate Arresto</td>
</tr>
<tr>
<td>HID</td>
<td>High-Intensity Discharge</td>
</tr>
<tr>
<td>HS</td>
<td>High School</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, Ventilating and Air Conditioning</td>
</tr>
</tbody>
</table>
The SCA/DOE compliance process is similar to the LEED certification process but requires compliance verification earlier during the design phase. The SCA/DOE compliance process is less complex for Design Teams and Contractors than LEED certification review because complying systems have been reviewed and incorporated into the SCA design standards.

SCA Compliance Review is administered by trained SCA Architecture and Engineering (A&E) Department reviewers and SCA commissioning agents who monitor design and construction compliance and review certificates prepared by the A/E of Record during the design and construction phases and by the General Contractor during the construction phase.

Design Teams should note that this rating system, unlike LEED, is not competitive. Projects must pursue all required and feasible credits. There is no incentive or differentiation in ratings for schools achieving more points because the number of points achieved will typically be based only on the circumstances of site and scope.

2.1 DESIGN PHASE DOCUMENTATION PROCESS

The A/E of Record will follow the requirements in this guide to develop sustainable school designs compliant with the NYC Green Schools Rating System. SCA compliance reviews during the design phase of the project are conducted by a trained group of SCA A&E reviewers. The SCA TBC Unit must provide their concurrence with SCA A&E that the 100% sustainable design report meets the required criteria based on their review of the documentation submitted.

At the conclusion of the 100% Design Phase, the A/E of Record will prepare a Sustainable Design Compliance Certification package. This package is provided to the Green Schools' Review Committee as documentation of design compliance with LL86/05.

The steps in the SCA/DOE sustainable design compliance process include:

- Pre-Schematic – Development of site selection credit documentation.
- Schematic Design – Submission of project checklist and compliance narratives and documentation for site selection credits.
- Design Development – Submission of sustainable design report including credit compliance narratives.
- 60% Design – Submission of sustainable design report including design phase credit calculations and forms.
- 100% Construction Documents – Submission of final sustainable design report including Design Compliance Certification.

The procedures for the sustainable certification process during the construction and post – occupancy phases are elaborated in section 2.2. Note that the commissioning process takes place throughout the project design and construction.

SUSTAINABLE DESIGN PROCEDURES

FEASIBILITY STUDY PHASE

Site feasibility studies are often prepared by designers who are independent of the school Design Team ultimately selected to execute the project. Designers assigned to prepare Feasibility Studies must investigate documentation of sustainable site information as described in the SCA Design Requirement for the scope of feasibility studies. The SCA may choose on a case-by-case basis to require testing to determine viability of sustainable measures such as geothermal wells or on-site stormwater disposal.
PRE-SCHEMATIC DESIGN
1. The Design Team is required to familiarize themselves with the NYC Green Schools Guide and Project Checklist and the LL86/05 Reporting Form.
2. Pre-schematic conceptual design options should consider sustainable measures that are attainable for the site and building appropriate to this level of design, especially as they relate to selected site credits.
3. No submittal is required at this phase.

SCHEMATIC DESIGN
Include the following in the Sustainable Design Report:
1. Submit NYC Green Schools Rating System Project Checklist with proposed credits indicated.
2. Submit Credit Compliance Narratives and documentation for the site credits related to site selection (identified in credit submittals). Information may be drawn from the project feasibility study.
3. If the SCA has provided permission/direction to pursue credits from the Additional Credits section, submit a cost analysis for NYC Green Schools Rating System Additional Credit cost allocation, when applicable.
4. Submit LL86/05 Reporting Form with the Design Data portion of the form completed.

DESIGN DEVELOPMENT
Include the following in the Sustainable Design Report:
1. Submit updated Project Checklist – explain any changes.
2. Submit a Credit Compliance Narrative for each credit (except the site selection credits previously documented unless they have changed). Each narrative should describe the approach to pursuing the credit, compliance methodology, SCA specification sections and standard details that will be included in the construction documents to achieve compliance. Include an explanation of each credit that is determined to be not feasible for this project.
3. CxA is to submit the Project TBC plan, which includes the Commissioning Matrix modified to apply to this project by the Designer of Record.
4. Submit a cost analysis for NYC Green Schools Rating System Additional Credit cost allocation when applicable.

60% CONSTRUCTION DOCUMENTS
Construction documents submitted with this submittal must incorporate sustainable requirements.
Include the following in the Sustainable Design Report:
1. Submit updated Project Checklist – explain any changes.
2. Submit any revised Credit Compliance Narratives, as required.
3. Submit calculations, design studies, forms and other required credit documentation for all design phase credits (except for site selection credits previously documented).
4. Submit a cost analysis for NYC Green Schools Rating System Additional Credit cost allocation when applicable.
5. Provide documentation on any changes in the SCA/DOE’s project requirements.

100% CONSTRUCTION DOCUMENTS
Construction documents submitted with this submittal must incorporate sustainable requirements.
Include the following in the Final Sustainable Design Report:
1. Submit final Project Checklist.
2. Submit any revised Credit Compliance Narratives, as required.
3. Submit Design Compliance Certificates signed by architect and engineer of record.
4. Submit a cost analysis for NYC Green Schools Rating System Additional Credit cost allocation.
5. Provide documentation on any changes in the SCA’s project requirements.
6. Submit LL86/05 Reporting Form with the Design & Construction Data portions of the form completed.

2.2 CONSTRUCTION PHASE DOCUMENTATION PROCESS

Compliance reviews during the construction period will be by the Commissioning Unit. After the completion of the review process, the Commissioning Unit/SCA Green Schools Review Committee will verify that the project complies with the NYC Green Schools Rating System and the requirements of LL86/05.

CONSTRUCTION PHASE
1. Review construction submittals for compliance with specified sustainable requirements. For substitutions, indicate that the item meets or exceeds the sustainable standards specified.
2. Review Contractor’s compliance certificate and supporting documentation per NYC Green Schools Guide and specified requirements.

POST-CONSTRUCTION PHASE
Submit LL86/05 Reporting Form-Post Occupancy after determination of project meeting requirements.
Please refer to the Compliance Certification Process diagram at end of this section.

2.3 COMMISSIONING

While LEED credits require commissioning of a minimum set of systems, the SCA and DOE have determined to conduct whole building commissioning in accordance with the SCA Total Building Commissioning (TBC) Plan created specifically for the subject project. Commissioning will be conducted by a joint commissioning group made up of trained staff from the SCA TBC Unit as well as other elements from SCA departments, SCA Consultants, and Contractor’s personnel as presented in the SCA TBC plan. The commissioning process will be monitored by the designated project commissioning agent (CxA) assigned to the subject project by the TBC Unit Director. A description of the commissioning process and a copy of the project specific Commissioning Plan and Commissioning Matrix are provided at the beginning of Construction. Commissioning requirements are provided in the applicable specifications sections.

The Commissioning Unit is also responsible for monitoring sustainable compliance during construction. This group will perform verification audits, as per the TBC plan, to insure that any substitutions are in compliance with the SCA Green Schools Guide requirements for sustainability.

At the completion of construction, the SCA TBC Unit will review the Construction Phase Compliance Certification Package for compliance and audit a selection of credits to confirm compliance.

2.4 CERTIFICATION PROCESS

2.5 THIRD-PARTY AUDIT OF PROJECTS

At the end of each fiscal year, the SCA will provide The Mayor’s Office of Environmental Coordination (MOEC) with a list of new construction, addition and substantial reconstruction projects completed during that fiscal year. The MOEC will select 10% of these projects to receive a third-party certification audit. The purpose of the verification is to review a sample of projects for compliance with the requirements of the NYC Green Schools Rating System. Where possible, the audit sample will be representative of SCA’s distribution of project types (new construction of small schools and large schools, as well as rehabilitation projects). The third-party auditor will be under contract to the Mayor’s Office of Environmental Coordination.
Post-Construction

Feasibility Studies

Pre-Schematic

Schematic Design

Design Development

Other Agencies

Review

Other Agencies

Review

Revi
<table>
<thead>
<tr>
<th>60% Construction Doc.</th>
<th>100% Construction Doc.</th>
<th>Construction Administration</th>
<th>Post-Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissioning</td>
<td>Commissioning</td>
<td>Review</td>
<td>Review</td>
</tr>
<tr>
<td>Agent</td>
<td>Agent</td>
<td>Review of design documents</td>
<td>Review energy efficiency with DCAS</td>
</tr>
<tr>
<td>Design Team</td>
<td>Design Team</td>
<td>Second Commissioning Review of design documents</td>
<td>Review SCA standards if necessary</td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Project Checklist</td>
<td>Project Checklist</td>
<td>Project Checklist</td>
<td></td>
</tr>
<tr>
<td>Design Submittal</td>
<td>LL68 Reporting Forms (Design Data) Certification Forms</td>
<td>LL68 Reporting Form (Design Data) Design & Construction Certification Statements Backup documentation</td>
<td></td>
</tr>
<tr>
<td>Incorporate Credit</td>
<td>Incorporate Credit</td>
<td>Sustainable submittal</td>
<td></td>
</tr>
<tr>
<td>requirements in</td>
<td>requirements in</td>
<td>Preparation of sustainable</td>
<td></td>
</tr>
<tr>
<td>construction documents</td>
<td>construction documents</td>
<td>construction phase</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>documentation</td>
<td></td>
</tr>
<tr>
<td>Develop project</td>
<td>Develop project</td>
<td>Complete Commissioning</td>
<td></td>
</tr>
<tr>
<td>specific</td>
<td>specific</td>
<td>Report. Review</td>
<td></td>
</tr>
<tr>
<td>commissioning plan</td>
<td>commissioning plan</td>
<td>building operation</td>
<td></td>
</tr>
<tr>
<td>and specs</td>
<td>and specs</td>
<td>within 10 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td>Review</td>
</tr>
<tr>
<td>Final compliance &</td>
<td>Final compliance &</td>
<td>Final compliance &</td>
<td>Review</td>
</tr>
<tr>
<td>certification review</td>
<td>certification review</td>
<td>certification review</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Report LL68</td>
<td>Report LL68</td>
<td>Report LL68</td>
<td></td>
</tr>
<tr>
<td>Design & Construction Data</td>
<td>Design & Construction Data</td>
<td>Design & Construction Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Review construction</td>
<td>Review construction</td>
<td>Review construction</td>
<td></td>
</tr>
<tr>
<td>documents for</td>
<td>documents for</td>
<td>documents for</td>
<td></td>
</tr>
<tr>
<td>modifications to</td>
<td>modifications to</td>
<td>modifications to</td>
<td></td>
</tr>
<tr>
<td>design submittal</td>
<td>design submittal</td>
<td>design submittal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Secondly Commissioning</td>
<td>Secondly Commissioning</td>
<td>Secondly Commissioning</td>
<td></td>
</tr>
<tr>
<td>Review of design</td>
<td>Review of design</td>
<td>Review of design</td>
<td></td>
</tr>
<tr>
<td>documents</td>
<td>documents</td>
<td>documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Incorporate Credit</td>
<td>In incorporate Credit</td>
<td>In incorporate Credit</td>
<td></td>
</tr>
<tr>
<td>requirements in</td>
<td>requirements in</td>
<td>requirements in</td>
<td></td>
</tr>
<tr>
<td>construction documents</td>
<td>construction documents</td>
<td>construction documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Second Commissioning</td>
<td>Second Commissioning</td>
<td>Second Commissioning</td>
<td></td>
</tr>
<tr>
<td>Report of design</td>
<td>Report of design</td>
<td>Report of design</td>
<td></td>
</tr>
<tr>
<td>documents</td>
<td>documents</td>
<td>documents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review</td>
<td>Review</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>Verify performance of</td>
<td>Verify performance of</td>
<td>Verify performance of</td>
<td></td>
</tr>
<tr>
<td>systems</td>
<td>systems</td>
<td>systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.1 LEED COMPLIANCE OR EQUIVALENCY

LL 86/05 revisions effective as of June 26, 2009, states that alternative green building standards, no less stringent than applicable LEED 2009 standard, may be used with Mayoral approval. Following previous extensive study and preparation of the NYC Green Schools Guide, the SCA/DOE prepared an Equivalency Report and Equivalency Analysis documentation to demonstrate to the Mayor’s Office that the NYC Green Schools Rating System 2009 develops schools that achieve sustainable standards equivalent to, or more stringent than, LEED for Schools 2009 Certified rating. The NYC Mayor’s Office of Environmental Coordination has issued findings demonstrating that this rating system developed by the SCA/DOE is no less stringent than LEED standards for LEED for Schools 2009.

Note that alternative compliance measures are not permitted for other LL86/05 mandates regarding energy and water reduction requirements.

3.2 LEED-NC VERSION 2.1 ENERGY COST REDUCTION MODELING

LL 86/05, as initially enacted, makes specific reference to, and requires compliance with, LEED-NC version 2.1 Energy & Atmosphere credits, which address ASHRAE 90.1-1999 as a reference standard for measuring energy efficiency or the latest New York State Energy Code, which is more stringent. The prototypical modeling conducted by the SCA in developing the original NYC Green Schools Guide showed that schools would meet and in some cases surpass the energy cost reduction requirements of LL86/05 using a standardized combination of energy conservation measures developed by the SCA. Upon passage of the latest NYS-ECCC, further prototypical modeling was performed. Atypical schools will require project specific demonstration of energy cost reduction using NYS-ECCC methodology referencing ASHRAE 90.1-2007, per LL86/05.

3.3 LEED-NC VERSION 2.2 AND LEED 2009 ENERGY COST REDUCTION MODELING

After the enactment of LL 86/05, the USGBC updated the LEED-NC rating system and issued LEED-NC version 2.2. LEED 2.2 Energy and Atmosphere credits referenced an ASHRAE standard – ASHRAE 90.1 – 2004 and Appendix G thereof. The energy performance levels prescribed by LEED 2.2 (ASHRAE 90.1-2004 and Appendix G) were more stringent than the 1999 version. The USGBC’s recent update of the LEED-NC rating system to LEED 2009 references ASHRAE 90.1-2007 and requires surpassing that performance standard by 10%, which is thus more stringent than the LEED NC 2.2 or the New York State Energy Code.

The NYC Green Schools Rating System energy credits reference the same 2007 ASHRAE standard as the of LEED 2009. The SCA has conducted prototypical modeling to demonstrate compliance of typical schools with this standard and SCA credit E 4.1R. Atypical schools must demonstrate compliance on a project specific basis.

Optimized Energy Performance credit points (GSG credit A3.1) cannot be achieved using prototypical modeling; this credit requires project specific documentation and SCA direction/permission to pursue. Projects that conduct project specific modeling must do so using both ASHRAE 90.1-2004 or ASHRAE 90.1-2007, depending on when the project is filed, to demonstrate LL86/05 compliance and ASHRAE 90.1-2007 to achieve energy cost reduction credit points.
3.4 LL86/05 ANNUAL REPORTING REQUIREMENTS

LL86/05 PROJECT REPORTING
Reporting forms for each capital project must be completed and submitted in accordance with guidelines issued by the Mayor’s Office of Environmental Coordination. The A/E of Record will prepare these forms for the Design Phase of the form at the completion of Schematic and both Design and Construction Phases at the completion of 100% design. The SCA will forward the data to the Mayor’s Office of Environmental Coordination (MOEC). The SCA will complete the LL86/05-Post Occupancy form after final certification.

ENERGY CONSERVATION REPORTING
In place of project specific energy modeling for each new project, the SCA has developed standardized energy system prototypes as model systems for schools. The prototype ‘standard systems’ have been predetermined to be compliant with LL86/05 energy cost reduction mandates through energy modeling studies. Prototype systems were developed through energy modeling for typical school buildings and scaled in the modeling exercise to equate with the size and energy requirements of other typical school buildings - high schools, primary schools, early childhood centers, additions and modernizations.

It is intended that Design Teams utilize the scaled results of the energy modeling study as the reporting basis for each typical school building type – early childhood centers, primary schools, intermediate schools, high schools, modernizations and additions. This approach is viable because of the standardization in school programs, design requirements, specifications, details and building systems. This time and cost-effective approach allows the SCA to meet its Capital Plan commitment goals and comply with LL86/05 requirements.

3.5 UPDATING THE NYC GREEN SCHOOLS GUIDE

REGULATORY CHANGES
When there are modifications or revisions to the New York City Building Code, New York State Energy Conservation Construction Code, ASHRAE standards, Local Law 86 and/or the rules governing green building standards the SCA will revise its energy models, the NYC Green School Rating System, the NYC Green Schools Guide and other related SCA design standards and guidelines, as appropriate, to reflect regulatory changes. The SCA will provide the MOEC with a written explanation of all regulatory changes and the updates made and provide a copy of the updated documents. In the event that the SCA determines that a regulatory change does not impact the NYC Green Schools Guide, SCA will provide MOEC with a written explanation of this determination.

UTILITY RATE CHANGES
As the utility rates paid by Department of Citywide Administrative Services (DCAS) for schools change, the SCA will assess the impact of such rate changes on the energy modeling and determine whether energy efficiency measures need to be revised to comply with LL86/05. If energy efficiency measures are required to be revised, the SCA will provide the MOEC with a copy of the updated energy report and revisions to the applicable portions of the NYC Green Schools Guide. In the event the SCA determines that the rate changes do not impact the NYC Green Schools Guide and compliance with LL86/05, the SCA will provide the MOEC with a written explanation of this determination.
4.0 GREEN SCHOOLS RATING SYSTEMS
Designers can improve the interaction between buildings and their surroundings by taking advantage of site conditions and by reducing negative impacts of the built environment on the site and surroundings.

The credits in this section address site selection, massing and orientation of buildings, conservation of natural resources, and reduction of building impacts. Prudent site selection is essential for utilizing existing infrastructure, promoting appropriate density in urban development and protecting environmentally sensitive areas such as wetlands and flood prone areas. Massing and orientation of buildings impact daylighting opportunities, provide protection from wind and weather conditions and can help conserve land and protected habitats. The impact of school buildings on their environment can be mitigated by locating schools near public transportation, reducing stormwater runoff, controlling exterior light pollution, reducing heat island effects and limiting construction related pollution.

One of the greatest challenges in building new schools in New York City is finding appropriate sites. The SCA site selection process includes the consideration of available properties that are within the geographical and jurisdictional area of need, which meet the minimum size requirement for the targeted project.

All Design Teams need to evaluate the advantages and disadvantages of the selected site and design schools to respond to the selected sites in a sustainable way.
S1.1R

CONSTRUCTION ACTIVITY POLLUTION PREVENTION

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce pollution from construction activities by controlling soil erosion, waterway sedimentation and airborne dust generation.</td>
<td>Create and implement an Erosion and Sedimentation Control Plan, including a narrative and drawing, for all construction activities associated with the project. LEED requires that the plan conform to the erosion and sedimentation requirements of the 2003 EPA Construction General Permit (CGP) or Local Standards and Codes, whichever is more stringent. The plan shall describe the measures implemented to accomplish the following objectives:</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>The EPA CGP outlines the provisions necessary to comply with Phase I and Phase II of the National Pollutant Discharge Elimination System (NPDES) program. While the EPA CGP only applies to construction sites greater than one acre, these requirements apply to all projects for the purposes of this credit. All projects that discharge into a separate storm system or receiving stream require a full Stormwater Pollution Prevention Plan (SWPP). For all projects, the Design Team must develop the Erosion and Sedimentation Control Plan. For projects less than one acre and that discharge into a combined sewer, the Erosion and Sedimentation Control Plan shall be shown schematically on the drawings and will be completed by the Contractor per the Project Specifications.</td>
</tr>
</tbody>
</table>

NYS DEC Standards and Specifications for Erosion and Sediment Control
Temporary Structural Measures
Construction Activity Pollution Prevention: Credit S1.1R

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematic Design</td>
<td>No credit submittal.</td>
</tr>
</tbody>
</table>
| Design Development | **Architect and Civil Engineer’s Responsibility**
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.
Indicate that the Design Team will develop the Erosion and Sedimentation Control Plan. |
| 60% Construction Documents | **Architect and Civil Engineer’s Responsibility**
• Submit appropriate specification sections modified for project.
• Submit the Erosion and Sedimentation Control Plan design document. |
| 100% Construction Documents | **Architect and Civil Engineer’s Responsibility**
No credit submittal. |
| Contractor’s Responsibility | **Per the Project Specifications:**
• Implement and/or develop the Erosion and Sedimentation Control Plan drawing and narrative or dust control plan if interior project only.
• Submit digital dated photos and inspection of logs measures taken during the course of construction.
• Submit Contractor’s Certification Form. |

References

- LEED for Schools 2009 SS Pr 1
Construction Activity Pollution Prevention
- SCA Design Requirements
None
- SCA Standard Specifications
S01900 Existing Premises Work
02200 Earthwork
- SCA Standard Details
None
- Other References
NYS DEC Standards and Specifications for Erosion and Sediment Control
Temporary Structural Measures:
http://www.dec.ny.gov/chemical/29066.html
- NYS DEC SPDES General Permit For Construction Activity:
http://www.dec.state.ny.us/website/dow/gen_constr.pdf
- NYS DEC Sample Erosion and Sediment Control Plan:
http://www.dec.state.ny.us/website/dow/toolbox/escstandards/appendixtf.pdf
- NPDES EPA Construction General Permit:
http://cfpub.epa.gov/npdes/stormwater/cgp.cfm
SITE SELECTION

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid the selection and development of inappropriate sites, and/or portions of sites, and reduce the environmental impact of locating the building on a site.</td>
<td>Do not develop buildings, hardscape, roads or parking areas on portions of the site that meet any of the following criteria:</td>
<td>The SCA Design Requirement for Site feasibility study report includes investigation of this credit. Potential school project sites are identified with the input of the NYC Department of Education, the SCA and other parties. Feasibility studies are often conducted by a different entity than the school Design Teams.</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>1. Previously undeveloped land whose elevation is lower than five feet above the elevation of the 100-year flood as defined by the Federal Emergency Management Agency.</td>
<td>To ensure that sustainable site issues are considered, the SCA Design Requirement outlining the scope of services for feasibility studies requires investigation of the items listed in this credit. In cases where a feasibility study has been completed, the Design Team may find useful information for documenting this credit in the feasibility study.</td>
</tr>
<tr>
<td></td>
<td>2. Land that is specifically identified as habitat for any species on Federal or State threatened or endangered species lists.</td>
<td>The SCA Design Requirement 1.1.3.1 (Feasibility Study) includes requirements for this credit.</td>
</tr>
<tr>
<td></td>
<td>3. Land within 100 feet of any wetlands as defined by United States Code of Federal Regulations 40 CFR, Parts 2130-233 and Part 22, and isolated wetlands or areas of special concern identified by state or local rule, OR within setback distances from wetlands prescribed in state or local regulations, as defined by local or state rule or law, whichever is more stringent.</td>
<td></td>
</tr>
</tbody>
</table>
Schematic Design

Architect’s Responsibility
Submit a narrative summarizing compliance with each of the site selection criteria utilizing the numbering under requirements:

• Include information demonstrating whether site was previously developed.
• For previously undeveloped land, submit a site plan indicating elevations in relation to the 100-year flood.
• Submit US Fish and Wildlife Service listing of endangered species for the county. Provide site specific documentation if site is adjacent to a river or coastline, or if list includes species besides shortnose sturgeon, piping plover, roseate tern and sea beach amaranth. Submit site specific documentation from the New York Natural Heritage Program on whether site is the habitat for threatened or endangered species.
• Submit documentation of proximity to wetlands. Include annotated plan if site is within state or local setback distances.
• For previously undeveloped land, submit documentation of proximity to bodies of water. Include annotated plan if site is within 50 feet of a water body.
• If project is on public parkland, indicate if land of equal or greater value was accepted in trade by landowner.
• Submit updated documentation as necessary through to Design Development.

Design Development
No credit submittal.

60% Construction Documents
No credit submittal.

100% Construction Documents

Architect’s Responsibility
• Submit the Certification Form with completed information for this credit.

Construction
No credit submittal.

References

LEED for Schools 2009 SS Credit 1 Site Selection

SCA Design Requirements
1.1.3.1 Feasibility Study

SCA Standard Specifications
None

SCA Standard Details
None

Other References
FEMA flood insurance rate maps: http://msc.fema.gov

New York Natural Heritage Program
625 Broadway, 5th Floor
Albany, NY 12233-4757
Phone: (518) 402-8935
http://www.dec.ny.gov/animals/29338.html

US Fish and Wildlife Service
Islip Field Office
Phone: (631)776-1401
http://www.fws.gov/northeast/nyfo/es/section7.htm (see county list of endangered species)
Encourage the analysis of sustainable design factors in the pre-design phase. A thorough site analysis allows designers to make informed design decisions and to take full advantage of solar orientation, prevailing wind direction, topography and landscape.

This credit is required, if feasible, for all projects.

Implement no fewer than three of the following sustainable site analyses:

1. Orient and compose the building to take advantage of natural daylighting.

2. Plot shadow patterns from surrounding buildings onto project site to optimize access to daylight.

3. Plot shadow patterns from proposed building(s)/addition on adjacent properties and buildings and consider design options to address impact as necessary.

4. Consider prevailing winds when determining the site and building layout.

5. Take advantage of existing adjacent building and natural land formations and vegetation to provide shelter from extreme weather or to deflect unwanted noise.

6. Design landscaping to mitigate solar gain and winter winds.

7. Identify viable locations on the roof(s) for potential renewable energy generation.

When sections of the building can be oriented along the east-west axis, the buildings can take advantage of natural daylighting and reduced glare conditions. This can reduce electrical lighting and resultant energy consumption.

By charting shadows on the site at equinox and solstice, the building can be positioned to improve opportunities for natural daylighting and to reduce shading on adjacent properties. A reproduction of sun angle data for New York City’s latitude and longitude is provided here for reference.

In New York City, prevailing winds generally come from the northwest between October and April and from the south/southwest between May and September. The shape of the building or addition can create wind-sheltered spaces. When considering site placement of bus parking, avoid layouts where prevailing winds would blow exhaust into the school air intakes.

Plantings can be used to control light and wind. Plant or protect existing deciduous trees to block summer sun and allow winter solar gain. Plant or protect existing coniferous trees to block winter wind. Planting should be done an adequate distance from the building to prevent moisture retention near the building envelope.

In the future, harvesting renewable energy may become cost effective and roofs could be designed to accommodate renewable energy sources such as photovoltaics and solar domestic hot water. Potential positions for photovoltaic panels should not...
be shaded and should be oriented to maximize solar energy collection.

The intent of this last requirement is to identify potential sites for renewable measures but not to modify building infrastructure.

Solar Angle Data for New York City

<table>
<thead>
<tr>
<th>Date</th>
<th>Altitude (°)</th>
<th>Azimuth (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun 21</td>
<td>49.2°</td>
<td>101.2°</td>
</tr>
<tr>
<td>9:00</td>
<td>49.2°</td>
<td>101.2°</td>
</tr>
<tr>
<td>12:00</td>
<td>72.7°</td>
<td>182.0°</td>
</tr>
<tr>
<td>3:00</td>
<td>48.2°</td>
<td>259.9°</td>
</tr>
<tr>
<td>Sep 21</td>
<td>34.7°</td>
<td>125.3°</td>
</tr>
<tr>
<td>9:00</td>
<td>34.7°</td>
<td>125.3°</td>
</tr>
<tr>
<td>12:00</td>
<td>49.8°</td>
<td>184.4°</td>
</tr>
<tr>
<td>3:00</td>
<td>31.0°</td>
<td>239.8°</td>
</tr>
<tr>
<td>Dec 21</td>
<td>14.3°</td>
<td>139.4°</td>
</tr>
<tr>
<td>9:00</td>
<td>14.3°</td>
<td>139.4°</td>
</tr>
<tr>
<td>12:00</td>
<td>25.8°</td>
<td>181.6°</td>
</tr>
<tr>
<td>3:00</td>
<td>12.7°</td>
<td>223.0°</td>
</tr>
</tbody>
</table>

Source: U.S. Naval Observatory, Astronomical Applications Department 2006

DESIGN DEVELOPMENT

No credit submittal.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

No credit submittal.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

- **Sustainable Site & Building Layout**
 - NY CHPS Version 1.0 Credit 1.1.7
 - Sustainable Site & Building Layout

- **SCA DESIGN REQUIREMENTS**
 - 1.1.3.1 Feasibility Study
 - 1.3.1.1 Building Location and Orientation
 - 1.3.4.1 Entrances and Exits
 - 2.5.1 Trees, Shrubs, Ground Cover and Lawns

- **SCA STANDARD SPECIFICATIONS**
 - None

- **SCA STANDARD DETAILS**
 - None

- **OTHER REFERENCES**

 Wind roses for New York City:

 General wind data for New York City:

 Sun angle data:
S1.4 DEVELOPMENT DENSITY & COMMUNITY CONNECTIVITY

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel development to urban areas with existing infrastructure, protect green fields and preserve habitat and natural resources. This credit is required, if feasible, for all projects.</td>
<td>Confirm that the project site meets the desired level of community connectivity and development density using one of the following two methods: Option 1 – Community Connectivity Construct or renovate building on a previously developed site that is within a half mile of a residential zone neighborhood with an average density of 10 dwelling units per acre AND within a half mile radius of at least 10 Basic Services AND with pedestrian access between the building and the services. For mixed use projects, one service within the project boundary may be counted as one of the ten basic services, provided it is open to the public. No more than 2 of the 10 services required may be anticipated (at least 8 must be existing and operational). In addition, the anticipated services must be documented appropriately to demonstrate that these other services will be operational in the locations indicated within one year of occupation of the school project. Basic Services include, but are not limited to: 1) Bank; 2) Place of Worship; 3) Convenience Grocery; 4) Day Care; 5) Cleaners; 6) Fire Station; 7) Beauty Salon; 8) Hardware; 9) Laundry; 10) Library; 11) Medical/Dental; 12) Senior Care Facility; 13) Park; 14) Pharmacy; 15) Post Office; 16) Restaurant; 17) Another School or University; 18) Supermarket; 19) Theater; 20) Community Center; 21) Fitness Center; 22) Museum. 23) Commercial Office Note that no services can be duplicated except restaurants, which can only be listed twice. OR</td>
<td>All projects should attempt to comply with the requirements of this credit first by using Option 1. If a project site cannot comply with Option 1, then Option 2 must be used. For some sites, compliance with the credit requirements will not be feasible based on the site. The SCA Design Requirement for feasibility studies describes investigation of the requirements for this credit. A suggested tool for documenting compliance with Option 1 above is to use “Make a Map” through myciti.org to help locate basic services around the proposed site. The oasisnyc.net website may also be used for Option 2 to determine lot area and built area for all lots within the prescribed area. After a map is provided, the “Select” and “Lot Info” tools can be used to query information on surrounding lots near the school. Consistent with USGBC Credit Interpretation Rulings, park land, bodies of water and single family homes may be excluded from development density calculations. Physical education spaces like athletic fields and playgrounds may be excluded from development density calculations as well.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing which documentation method(s) were used and what the results were.
• Submit Development Density & Community Connectivity Form.
Along with the form, provide:
Option 1 – Community Connectivity
• Submit documentation that project is on a previously developed site that is within a half mile of a residential zone/neighborhood with an average density of 10 dwelling units per acre.
• Submit a site plan showing a half mile radius, and locating basic services within that radius that have pedestrian access. Drawings, maps and aerial photos can all be used as a basis for plans as long as a scale is provided.
OR
Option 2 – Development Density
• Submit a site vicinity plan showing the project site and the surrounding sites and buildings. Draw the density boundary on the plan, note the drawing scale and assign sequential numbers to each lot within the boundary. Drawings, maps and aerial photos can all be used as a basis for plans as long as a scale is provided.
• Submit updated documentation as necessary through to Design Development.

DESIGN DEVELOPMENT
No credit submittal.

60% CONSTRUCTION DOCUMENTS
No credit submittal.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

LEED for Schools 2009 SS Credit 2
Development Density & Community Connectivity

SCA DESIGN REQUIREMENTS
DR 1.1.3.1 Feasibility Study

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
For locating NYC community services: NYC planning maps and data:
http://www.myciti.org/

For building density information:
http://www.oasisnyc.net/OASISMap.htm

For zoning information:

For NYC census information:
http://gis.nyc.gov/dcp/pa/address.jsp

Area plan showing community services within 1/2 mile

Area plan for development density calculations

Legend
Visible
Name
- Cultural Center
- Library
- School
- University
- Hospital
- Police
- Fire
- Rec. Center
- Senior Center
- Post Office
- Day Care
- Subway
- After School
- Headstart

Radius = 3 x √ Site Area (SF)
S1.5R JOINT USE OF FACILITIES, COMMUNITY ACCESS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The most successful schools have a high level of parent and community involvement. This involvement can be enhanced if a school is designed so that neighborhood meetings, recreation activities, and other community functions can take place at the school in a safe and secure fashion. This credit is required for all projects.</td>
<td>Design appropriate entrances for community use of school facilities such as auditorium, gym, cafeterias, library, and select classrooms for meeting rooms. New York City Schools are used actively by the community. Public activities in New York City public schools include: after-school programs, voting, community meetings and provision of emergency services through a long-standing agreement with the Red Cross. Recreational areas and playgrounds are sometimes run as Jointly Operated Playgrounds with the NYC Department of Parks and Recreation.</td>
<td>The SCA Design Requirements are written to accommodate community use of school spaces such as auditoriums, gyms, cafeterias and libraries. Strategies that contribute to shared use of the school building include configuring entryways, lobbies and spaces for public use to allow for controlled or separate access of spaces likely to be used during and after school hours for community functions.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

DESIGN DEVELOPMENT
No credit submittal.

60% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit a copy of relevant plan areas annotated to indicate design features incorporated to accommodate community/public use of select places of assembly and other possible community use spaces. Show on annotated plan path of travel from building entrance to community use spaces.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

LEED for Schools 2009 SS Credit 10
Joint Use of Facilities

NY CHPS Version 1.0 Credit 1.1.2
Joint Use of Facilities

NY CHPS Version 1.0 Credit 7.5.2
Community Access

SCA DESIGN REQUIREMENTS
1.3.1.1 Building Location and Orientation
1.3.5.1 Cafeteria PK-8 and HS

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ensure that the site is assessed for environmental contamination and if contaminated, that the environmental contamination has been remediated to protect children’s health.</td>
<td>Conduct a Phase I Environmental Site Assessment (as described in ASTM E1527-05) to determine whether environmental contamination exists at the site. If contamination is suspected, conduct a Phase II Environmental Site Assessment (as described in ASTM E1903-97, 2002).</td>
<td>Environmental site assessments are conducted through the SCA/IEH Unit and are typically completed prior to the start of schematic design. Brownfield and site contamination status documentation may be obtained through feasibility report, SCA/IEH Unit or SCA/IEH consultant.</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>If a school site is contaminated, it must be remediated to meet local, state, or federal EPA region residential (unrestricted) standards, whichever is most stringent. Documentation from the authority (such as DEP or DEC) must be provided to prove that safe levels of contamination have been achieved.</td>
<td></td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing the site’s contamination/Brownfield status, providing a summary portion of the Phase I ESA (and Phase II ESA when required) for review. Indicate which entity has declared the site contaminated.
• Attach executive summary level findings on site contamination.

DESIGN DEVELOPMENT
No credit submittal.

60% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Update narrative of proposed remediation measures.
• Incorporate specifications and details by SCA IEH division into construction documents.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
ARCHITECT’S RESPONSIBILITY
If remediation was required:
• Provide in narrative form the actions taken to remediate the site and the results of these actions.
• Provide documentation that the site has been returned to residential (unrestricted) use standards.
• Submit Certification Form with completed information for this credit.

REFERENCES
LEED for Schools 2009 SS Pr 2
Environmental Site Assessment

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
ASTM E1527-05
ASTM E1903-97, 2002
s1.7 BROWNFIELD REDEVELOPMENT

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rehabilitate damaged site where development is complicated by environmental contamination, reducing pressure on undeveloped land.</td>
<td>Confirm project site is:</td>
<td>Environmental site assessments are conducted through the SCA/IEH Unit and are typically completed prior to the start of schematic design. Brownfield and site contamination status documentation may be obtained through feasibility report, SCA/IEH Unit or SCA/IEH consultant.</td>
</tr>
<tr>
<td>This credit is required, if feasible, for all projects.</td>
<td>Defined as a Brownfield by a New York City, New York State, or federal government agency. OR</td>
<td>SCA school sites are remediated to a residential remediation standard per NYS DEC requirements.</td>
</tr>
<tr>
<td></td>
<td>As documented as contaminated by means of ASTM E 1903-97 Phase II Environmental Site Assessment Reg. 40CFR Part 763 required in credit S1.6R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent with USGBC Credit Interpretation Ruling for this credit (available on USGBC web site), contamination by asbestos is addressed by this credit if it is documented with one of the methods indicated above.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consistent with LEED, there is no minimum required amount of contamination required to achieve this credit. However, sites with only minimal amounts of contaminants should not pursue this credit.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If a school site is contaminated, it must be remediated to meet local, state, or federal EPA region residential (unrestricted) standards, whichever is most stringent. Documentation from the authority (such as DEP or DEC) must be provided to prove that safe levels of contamination have been achieved. Because the remediation process leads to significant benefits, one point in this credit can be achieved for successful documented remediation of the site.</td>
<td></td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing the site’s contamination/Brownfield status. Indicate which entity has declared the site contaminated.
• Attach executive summary level findings on site contamination.

DESIGN DEVELOPMENT
No credit submittal.

60% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Incorporate specifications and details by SCA IEH division into construction documents.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
No credit submittal.

CONSTRUCTION
ARCHITECT’S RESPONSIBILITY
• Provide documentation that the site has been returned to residential (unrestricted) use standards.
• Submit Certification Form with completed information for this credit.

REFERENCES
LEED for Schools 2009 SS Credit 3 Brownfield Redevelopment

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
Project specific specifications prepared by SCA IEH division.

SCA STANDARD DETAILS
Project specific details prepared by SCA IEH division.

OTHER REFERENCES
Site cleanup strategies:
www.brownfieldstsc.org

US EPA Brownfield programs:
www.epa.gov/brownfields
S2.1 ALTERNATIVE TRANSPORTATION, PUBLIC TRANSPORTATION ACCESS

INTENT

Reduce pollution and land development impacts from automobile use.

This credit is required, if feasible, for all projects.

REQUIREMENTS

Option 1: Confirm project site is within a half mile walking distance (2,640 feet) of an existing – or planned and funded – commuter rail, light rail or subway station (measured from main building entrance). Distance must be calculated along pedestrian routes, not bird’s eye distance.

OR

Option 2: Confirm project site is within one fourth mile walking distance (1,320 feet) of one or more stops for two or more public bus campus or private school bus lines usable by building occupants (measured from main building entrance). Distance must be calculated along pedestrian routes, not bird’s eye distance.

BEST PRACTICES AND IMPLEMENTATION

Design Teams should review the project Feasibility Study for information relating to documenting this credit.

Project Vicinity Map Showing All Bus and Subway Stops Within 1/4 Mile of Site
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
- Submit a narrative describing whether this credit is feasible.
- Submit a scaled area plan and show all existing and proposed commuter rail, light rail or subway stations within a half mile walk of the site OR all existing bus stops within ¼ mile walk of the site.
To indicate compliance, draw a line showing pedestrian path of travel from the site to each station/stop and indicate length of pedestrian path of travel in feet.

DESIGN DEVELOPMENT
No credit submittal.

60% CONSTRUCTION DOCUMENTS
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.
S2.2 ALTERNATIVE TRANSPORTATION, BICYCLE STORAGE & CHANGING ROOMS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce pollution and land development impacts from automobile use. This credit is required, if feasible, for all projects.</td>
<td>Provide secure bicycle racks and/or storage (within 200 yards of building entrance) for 5% or more of all building staff and students above third grade level (measured at peak periods). AND Provide shower and changing facilities in the building for 0.5% of Full-Time Equivalent (FTE) staff. Provide dedicated bike lanes, without any barriers, e.g., fences without gates from building entrance and/or bicycle racks to the sidewalk.</td>
<td>Design the building with transportation amenities such as bicycle racks and showering/changing facilities. NYC Zoning laws require a certain amount of interior bike storage, which can be utilized towards this credit.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN

ARCHITECT'S RESPONSIBILITY
- Submit a narrative describing whether this credit is feasible. The narrative must include:
 1. Location of bicycle storage/racks
 2. Location of the shower, changing facility
 3. The applicable SCA standards to be incorporated into design documents

DESIGN DEVELOPMENT

ARCHITECT'S RESPONSIBILITY
- Submit calculations and scaled plans to demonstrate compliance.
 Calculations to include:
 - Total number of users i.e. staff (FTE) plus all students above third grade level.
 - Number of full time staff
 - Number of bicycle racks
 - Number of lockers and showers in the changing facility.

Floor Plan(s) and site plan to include:
- Distance of bicycle storage/racks from building entrance
- Bike lane from building entrance and/or bicycle racks to the sidewalk.

60% CONSTRUCTION DOCUMENTS

ARCHITECT'S RESPONSIBILITY
- Incorporate layout, details and specifications in construction documents.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT'S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.
S2.3R

INTENT

Reduce pollution and land development impacts from automobile use.

This credit is required for all projects.

REQUIREMENTS

Option 1: (Preferred option) Provide no new parking on site (excluding curb parking on public streets). In narrative describe why no new parking is to be provided.

OR

Option 2: For schools with on-site parking (excluding curb parking on public streets), designate 5% of parking spaces provided as preferred parking for alternative transportation vehicles. Preferred parking refers to the parking spots that are closest to the main entrance of the project (exclusive of spaces designated for handicapped). Alternative transportation vehicles include low emitting and fuel efficient vehicles and car pool vehicles. Low-emitting and fuel-efficient vehicles are defined as vehicles that are either classified as Zero Emission Vehicles (ZEV) by the California Air Resources Board or have achieved a minimum green score of 40 on the American Council for an Energy Efficient Economy (ACEEE) annual vehicle rating guide.

BEST PRACTICES AND IMPLEMENTATION

NYC schools typically provide no parking except when mandated by the SEQRA Report. Students and teachers typically travel to school by public transportation or walk.

For reference in documenting Option 2, Design Teams should review the project Feasibility Study, if available.
SCHEMATIC DESIGN

ARCHITECT’S RESPONSIBILITY

- Submit narrative indicating which credit requirement option is to be complied with. For Option 1, summarize why no parking is to be provided. For Option 2, indicate how preferred parking is to be accommodated.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

For projects that will provide parking:

- Show the location(s) of the preferred parking spaces for alternative transportation vehicles.
- Indicate the number of parking spaces required for the project per local code or ordinance.

60% CONSTRUCTION DOCUMENTS

- If parking is provided, indicate special requirements on the contract drawings.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 SS Credit 4.3 Alternative Transportation Low-Emitting & Fuel-Efficient Vehicles

LEED for Schools 2009 SS Credit 4.4 Alternative Transportation Parking Capacity

SCA DESIGN REQUIREMENTS

DR 1.1.3.1 Feasibility Study

SCA STANDARD SPECIFICATIONS

None

SCA STANDARD DETAILS

None

OTHER REFERENCES

None
S3.1 SITE DEVELOPMENT, PROTECT OR RESTORE HABITAT

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conserve existing natural areas and restore damaged areas to provide habitat and promote biodiversity. This credit is required, if feasible, for all projects.</td>
<td>On previously developed or graded sites, restore or protect a minimum of 50% of the site area (excluding the building footprint) or 20% of the total site area (including building footprint), whichever is greater, with native or adapted vegetation. This credit should only be carried out on sites where there is no conflict between provision of outdoor student recreation space and the credit requirements. Projects earning credit S1.4 (Development Density and Community Connectivity) may include vegetated roofing areas to this calculation if the plants meet the definition of native/adapted and provide the habitat and biodiversity intent of this credit. Note that vegetated roofing is not an SCA standard and can only be pursued with special direction from the SCA. (See credit S5.1R - Option 2.)</td>
<td>Design Requirements relating to building siting incorporate the requirements of this credit. Specify native/adapted plants that require minimal or no irrigation following establishment. In consultation with the SCA, specify native/adapted plants that require minimal active maintenance by mowing or chemical inputs such as fertilizers, pesticides, herbicide and irrigation, and which provide habitat value and promote biodiversity through avoidance of monoculture plantings. If project includes work outside the lot lines, the site boundary shall include those areas (e.g. sidewalks). Compliance with this credit’s requirements will not be feasible for some sites based on existing site conditions and programmatic need for recreational space. Where vegetated roofing is included in the calculations for this credit, site area must include the building footprint. This credit is certified in the construction phase so that the final quantity of site area restored is noted following construction activities.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative describing whether this credit is feasible. For projects where the credit is feasible, provide SF calculations, indicate the design approach for credit compliance and identify the applicable SCA standards to be incorporated into design documents.
• For projects where credit is not feasible, include SF Calculations demonstrating that credit can’t be met.

DESIGN DEVELOPMENT
ARCHITECT’S RESPONSIBILITY
• Submit a list, in square feet, of the site area, building footprint area and the area, if any, to be restored using native and/or adapted plantings.
• Submit an annotated, scaled site plan identifying graphically the areas listed above if credit is feasible.

60% CONSTRUCTION DOCUMENTS
No credit submittal.

100% CONSTRUCTION DOCUMENTS
No credit submittal.

CONSTRUCTION
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.
• Submit updated documentation as necessary.

REFERENCES
LEED for Schools 2009 SS Credit 5.1
Site Development, Protect or Restore Habitat

SCA DESIGN REQUIREMENTS
1.1.3.1 Feasibility Study
1.3.1.1 Building Layout and Orientation

SCA STANDARD SPECIFICATIONS
Section 02200 Earthwork

SCA STANDARD DETAILS
None

OTHER REFERENCES
North American Native Plant Society: www.nanps.org
Native plant directory: www.plantnative.org
Society for Ecological Restoration International: www.ser.org
S3.2 SITE DEVELOPMENT, MAXIMIZE OPEN SPACE

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a high percentage of open space, vegetated green with adapted or native plants or pedestrian - oriented hardscape. This credit is required, if feasible, for all projects.</td>
<td>For school sites with no zoning-mandated open space requirements, provide vegetated open space equal to at least 20% of the project’s site area excluding the building footprint. Lawns do not promote biodiversity and do not satisfy the intent of this credit. Native or adapted plants satisfy the intent of this credit. This credit should only be carried out on sites where there is no conflict between provision of outdoor student recreation space and the credit requirements, or on special sites where the SCA has determined to use vegetated roofing. Option 1: For projects located in urban areas that earn S1.4 (Development Density and Community Connectivity), pedestrian - oriented hardscape areas (i.e., accessible play yards, athletic fields, plazas, courtyards) can contribute to credit compliance if a minimum of 25% of the open space counted is vegetated. Option 2: For projects located in urban areas that earn S1.4 (Development Density and Community Connectivity), vegetated roof areas can contribute to credit compliance. Note that vegetated roofing is not an SCA standard and can only be pursued with special direction from the SCA. Design Requirements relating to building siting incorporate the requirements of this credit. Given the high priority of providing opportunities for student recreation and the generally limited size of available urban sites, the number of projects able to achieve this credit will be limited. It is important to note that in the relatively low but dense urban areas where NYC schools are often built, consolidating building mass can have a negative impact on light, air and scale of an adjacent residential neighborhood. These factors should be considered in determining whether this credit should be pursued. If project includes work outside the lot lines, the site boundary shall include those areas (e.g. sidewalks). Where vegetated roofing is included in the calculations for this credit, site area must include the building footprint. For projects with large sites, a master plan should be developed, when directed by SCA Design Manager, to minimize site disruption. Strategies on applicable sites include stacking building program, locating parking (when provided) below the facility or sharing facilities with adjacent properties to maximize open space on the site. Compliance with this credits requirements will not be feasible for some sites based on existing site conditions and programmatic need for recreational space.</td>
<td></td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
ARCHITECT’S RESPONSIBILITY
• Submit a narrative describing whether this credit is feasible.
• For projects where the credit is feasible, provide SF calculations, indicate the design approach for credit compliance and identify the applicable SCA standards to be incorporated into design documents.
• For projects where credit is not feasible, include SF Calculations demonstrating that credit can’t be met.

DESIGN DEVELOPMENT
ARCHITECT’S RESPONSIBILITY
• Submit the project site area and building footprint area (in square feet).
• Submit a plan highlighting the dedicated vegetated open space and/or pedestrian oriented hardscape.
• Include the area of open space required by local zoning codes-regulations.
• Include the area of the vegetated dedicated open space provided by the project.

60% CONSTRUCTION DOCUMENTS
No credit submittal

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.
• Submit updated documentation as necessary.

CONSTRUCTION
No credit submittal.

LEED for Schools 2009 SS Credit 5.2
Site Development Maximize Open Space

SCA DESIGN REQUIREMENTS
1.1.3.1 Feasibility Study
1.3.1.1 Building Layout and Orientation

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
STORMWATER DESIGN, QUALITY CONTROL

S4.1

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce or eliminate water pollution by reducing impervious cover, increasing on-site infiltration, eliminating sources of contaminants and removing suspended solids from stormwater runoff.</td>
<td>Implement a stormwater management plan that reduces impervious cover, promotes infiltration and captures and treats the stormwater runoff from 90% of the average annual rainfall using acceptable best management practices (BMPs).</td>
<td>This credit is likely to apply to sites that must meet State Pollutant Discharge Elimination System (SPDES) requirements regarding stormwater quantity and quality control (sites greater than one acre with separate storm sewer systems and located in a Total Maximum Daily Load (TMDL) watershed or discharging to an impaired 303(d) listed water body).</td>
</tr>
<tr>
<td>This credit is required, if feasible, for all projects.</td>
<td>BMPs used to treat runoff must be capable of removing 80% of the average annual post development total suspended solids (TSS) load based on existing monitoring reports. TSS are particles in a water sample that are of a size and weight that do not settle out of stormwater by gravity but would require filtering.</td>
<td>For projects that must comply with SPDES, the Design Team must develop documents and file the stormwater pollution prevention plan (SWPPP) with DEC.</td>
</tr>
<tr>
<td></td>
<td>BMPs are considered to meet these criteria if they are designed in accordance with standards and specifications from a state or local program that has adopted these performance standards.</td>
<td>If requested by the SCA, use alternative surfaces and pursue Credit A 2.2 (e.g., vegetated green roofs, permeable pavement or grid pavers) and non-structural techniques (e.g., rain gardens, vegetated swales, disconnection of imperviousness, rainwater recycling) to reduce imperviousness and promote infiltration, thereby reducing pollutant loadings.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN

No credit submittal.

DESIGN DEVELOPMENT

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit a narrative describing whether this credit is applicable/feasible.
- For projects where it is applicable summarize the design approach for credit compliance and identify applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit a list of Best Management Practices (BMPs), including a description of the function of each BMP and the percent of annual rainfall treated.
- Structural Controls
 - Submit a list of structural controls, including a description of the pollutant removal of each control and the percent of annual rainfall treated.
 - Include any special circumstances or considerations regarding the approach to the credit.

100% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

CONSTRUCTION

No credit submittal.

REFERENCES

- LEED for Schools 2009 SS Credit 6.2 Stormwater Design Quality Control
- SCA DESIGN REQUIREMENTS
 - 6.1.11 Stormwater Management
- SCA STANDARD SPECIFICATIONS
 - 02723 Storm Damage Systems
- SCA STANDARD DETAILS
 - None
- OTHER REFERENCES
 - NYS Stormwater Management Design Manual Stormwater Permit Requirements Chapter: http://www.dec.state.ny.us/website/dow/toolbox/swmanual/nysswmdm03.pdf

STORMWATER DESIGN, QUALITY CONTROL: CREDIT S4.1

55
S5.1R HEAT ISLAND EFFECT, ROOF

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce heat islands (thermal gradient differences between developed and undeveloped areas) to minimize impact on microclimate, and human and wildlife habitat.</td>
<td>Option 1: Use roofing materials having a Solar Reflectance Index (SRI) equal to or greater than 79 for low sloped roofs slope (<2:12), and 29 for steep sloped roofs slope (>2:12) for a minimum of 75% of the roof surface. Roofing materials having a lower SRI value than those listed below may be used if the weighted rooftop SRI average meets the following criteria: ((\text{Area SRI roof/Total roof area} \times \text{(SRI of installed roof/Required SRI)}) > 75%) OR Option 2: Install a vegetated roof for at least 50% of the roof area.</td>
<td>Option 1: • Use roof paver system with an SRI > 79. • Use compliant products for a coated metal roofing. OR Option 2: With SCA approval, use vegetated-green roof over 50% of the roof area or an area of roof such that the green roof system and SRI compliant area covers 75% of roof area. SCA specifications and details describe green roof for both stormwater detention and non-detention roof applications. For sites in areas that do not have a combined sewer, use the modified green roof assembly with interstitial egg crate drainage system to comply with NYC DEP stormwater detention regulations (design stormwater detention systems for 10-year / 24-hour storm events with a maximum allowable water level on the roof of 3 inches). This approach represents a significant added cost and is not an SCA standard. Exclusive use of roof vegetation to meet 100% DEP stormwater detention requirements has not been approved at this time by DEP. If this credit is achieved with a green roof, projects may also pursue credits: S3.1 Site Development Protect or Restore Habitat S3.2 Maximize Open Space S4.1 Stormwater Quality A2.2 Stormwater Quantity A6.1 The School Building as a Teaching Tool An extensive green roof system should consist of ‘adapted’ plants - plants that grow well in a given habitat with minimal attention from humans in the form of winter protection, pest protection, water irrigation, or fertilization once root systems are established in the soil. Provide hose bibb(s) for temporary watering of planted roofs.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN
No credit submittal.

DESIGN DEVELOPMENT
ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identify applicable SCA standards to be incorporated into the design.

60% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit a diagram showing project roof areas to highlight the location of specific roof materials and/or green roof systems. AND
 Option 1
 • Submit calculation of total area of proposed SRI compliant roofing materials and/or vegetated green roof area expressed as a percentage of total roof areas.
 • Submit a listing of proposed roofing materials and their SRI values.
 OR
 Option 2
 • Submit calculation of area of proposed green roof systems expressed as a percentage of total roof areas.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.
• Submit updated documentation as necessary.

CONSTRUCTION
DESIGN TEAM’S RESPONSIBILITY
• Review Contractor’s submittals for compliance with credit requirements.

REFERENCES
LEED for Schools 2009 SS Credit 7.2
Heat Island Effect: Roof

SCA DESIGN REQUIREMENTS
6.1.11 Stormwater Management

SCA STANDARD SPECIFICATIONS
07560 Fluid Applied Protected Membrane Roofing
07561 Fluid Applied Protected Membrane Roofing (Planted Roof)
07610 Sheet Metal Roofing

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
S6.1R LIGHT POLLUTION REDUCTION

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimize light trespass from the building and site, reduce sky-glow to increase night sky access, improve nighttime, visibility through glare reduction and reduce development impact from lighting on nocturnal environments.</td>
<td>FOR INTERIOR LIGHTING
Non-emergency interior luminaires, with a direct line of sight to any openings in the envelope (translucent or transparent), shall have its input power reduced (by automatic device) by at least 50% after 10 p.m. or directly after closing. After hours override may be provided by an occupant sensing device with manual override provided that the override last no more than 30 minutes. OR
Non-emergency luminaires shall have shielding (for a resultant transmittance of less than 10%) that will be controlled/closed by automatic device between the hours of 11 PM and 5 AM.</td>
</tr>
<tr>
<td>FOR EXTERIOR LIGHTING
Illuminate areas only as required for safety and comfort. Lighting Power Densities shall not exceed ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda) for the classified zone. Meet exterior lighting control requirements from ASHRAE/IESNA Standard 90.1-2007, Section 9, table 9.4.5, Exterior Lighting Section, without amendments (with errata but without addenda). All projects shall be classified under one of the following zones, as defined in IESNA RP-33-1999, and shall follow the requirements for that specific zone:
LZ1 – Dark (Developed areas within national parks, state parks forest land and rural areas)
Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.10 horizontal and vertical footcandles at the site boundary and no greater than 0.01 horizontal footcandles 10 feet beyond the site boundary. Document that no more than 2% of the total initial designed fixture lumens (sum total of all fixtures on site) are emitted at an angle of 90 degrees or higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. LZ2 – Low (Areas predominantly consisting of; Residential zoning, Neighborhood business districts, Light industrial with limited nighttime use, Residential mixed use areas)
Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.20 horizontal and vertical foot-candles at the site boundary and no greater than 0.01 horizontal foot-candles 15 feet beyond the site. Document that no more than 5% of the total initial designed fixture lumens (sum total of all fixtures on site) are emitted at an angle of 90 degrees or higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. LZ3 – Medium (All other areas not included in LZ1, LZ2 or LZ4 such as Commercial/Industrial, High-Density Residential)
Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.30 horizontal and vertical foot-candles at the site boundary and no greater than 0.01 horizontal foot-candles 15 feet beyond the site. Document that no more than 10% of the total initial designed fixture lumens (sum total of all fixtures on site) are emitted at an angle of 90 degrees or higher from nadir (straight down). For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. LZ4 – High (High activity commercial districts in major metropolitan areas. To be LZ4, (sum total of all fixtures on site) the area must be so designated by the local jurisdiction such as the local zoning authority)
To this end, the Rules of City of New York RCNY 5000-01 designates the lighting zones for the city based on zoning districts. Design exterior lighting so that all site and building mounted luminaries produce a maximum initial illuminance value no greater than 0.60 horizontal and vertical foot-candles at the site boundary and no greater than 0.01 horizontal foot-candles 15 feet beyond the site. Document that no more than 10% of the total initial designed fixture lumens are emitted at an angle of 90 degrees or higher from nadir (straight down). For LZ2, LZ3 & LZ4 - For site boundaries that abut public rights-of-way, light trespass requirements may be met relative to the curb line instead of the site boundary. For ALL Zones - Illuminance generated from a single luminaire placed at the intersection of a vehicular driveway and public roadway accessing the site, is allowed to use the centerline of the public roadway as the site boundary for a length of 2 times the driveway width centered at the centerline of the driveway.</td>
<td></td>
</tr>
</tbody>
</table>
SCA Standards require that all non-emergency interior lighting be automatically turned off when the school is not in operation with manual override capability for after hours use.

Adopt site lighting criteria to maintain safe light levels while avoiding off-site lighting and night sky pollution. Minimize site lighting where possible and model the site lighting using a computer model.

Technologies to reduce light pollution include full cutoff luminaries, low-reflectance surfaces and low-angle spotlights.

Note that exterior lighting for playing fields is not required to comply with the requirements of this credit. Follow ASHRAE 90.1-2007 Section 9.4.5 Exception E. All lighting will be automatically controlled to shut-off no later than 11:00 p.m., but shall be provided with manual override. Addenda, if used, must be applied consistently across all LEED credits.

SCHEMATIC DESIGN
No credit submittal.

DESIGN DEVELOPMENT

ENGINEER'S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents. Indicate site zone classification for the project.

60% CONSTRUCTION DOCUMENTS

ENGINEER'S RESPONSIBILITY
- Submit a narrative description of the results of light trespass analysis including the highest quantities of horizontal and vertical footcandles at the site boundary and at 10 feet beyond site boundary for LZ2 and 15 feet beyond for LZ3 and LZ4.
- Provide plans of the exterior lighting corresponding to the narrative.
- Submit the Light Pollution Reduction Form A - Site Lumen Calculation Form.
- Submit Light Pollution Reduction Form B - Lighting Power Density (LPD) for both exterior site lighting and façade/landscape lighting.

For projects where all non-emergency interior lighting within the scope of the project will not be automatically controlled to turn off when the school is not in operation:
- Submit typical classroom plan indicating that the angle of maximum candela from classroom luminaires do not exit classroom windows.

100% CONSTRUCTION DOCUMENTS

ENGINEER'S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

CONSTRUCTION
No credit submittal.

REFERENCES
LEED for Schools 2009 SS Credit 8 Light Pollution Reduction

ANSI/ASHRAE/IESNA Standard 90.1-2004

SCA DESIGN REQUIREMENTS
7.2.1 Interior Lighting
7.2.3 Emergency Lighting
7.2.5 Exterior / Site / Security Lighting
7.2.6 Athletic Fields / Sports Lighting

SCA STANDARD SPECIFICATIONS
16145 Lighting Control
16500 Interior Building Lighting
16501 Lamps, Ballasts, and Accessories
16520 Exit Sign Lights and Emergency Lighting Fixtures and Systems
16530 Site/Security Lighting

SCA STANDARD DETAILS
None

OTHER REFERENCES
RCNY 5000-01 New York City Energy Conservation Code
SCA projects will achieve potable water use reduction through the use of water-conserving fixtures and reduction or elimination of irrigation for landscaping.

By reducing potable water use, the demands on sanitary sewage treatment infrastructure and facilities will be minimized.
<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit or eliminate the use of potable water, or other natural surface or subsurface water resources available on or near the project site, for landscape irrigation. This credit is required, if feasible, for all projects.</td>
<td>Reduce potable water consumption for irrigation by 50%. Provide ground vegetation comprised strictly of plant materials that require minimal amount of potable water for irrigation. Determination of 50% reduction in potable water consumption must be modeled after a mid-summer baseline case. It must also result from any combination of the following factors: irrigation efficiency, Plant species, density and microclimate factor, Harvested rainwater, Use of captured rainwater, Use of water treated and conveyed by a public agency specifically for non-potable uses.</td>
<td>A minimum of 5% of the total building site area must be allocated for vegetation. Projects without vegetation on the grounds must include a roof or courtyard garden space or outdoor planters. Allocated space for the garden or planters must at a minimum be 5% of the total building site area. Reduction in potable water consumption must be documented as described under "Requirements". If project includes work outside the lot lines, the site boundary shall include those areas (e.g. sidewalks). The SCA Design Requirements require use of native or adapted plants with no permanent irrigation system at landscaped areas. SCA defers to the NYC Parks Dept. for the selection of trees that are native to the northeastern US or adapted to the climate in NYC. SCA standards require maintenance hose bibs around the building, which may be used for temporary irrigation. In addition, the SCA’s standard for athletic fields is artificial turf, which requires no irrigation. Hose bibs are not considered permanent irrigation systems and can be used for temporary irrigation during periods of drought. Including ground cover from playgrounds and athletic fields in the pursuit of this credit is optional. However, if these areas are included in this credit’s calculation, they must be included in all other applicable credit calculations. Design Team must receive approval from the SCA to pursue this credit using irrigation because of the potential cost involved. On the atypical project where it is determined to utilize an irrigation system, one option to consider is the use of captured rainwater or stormwater.</td>
</tr>
<tr>
<td>In keeping with USGBC credit interpretation Rulings, a minimum of 5% of the total building site area (including building footprint, hardscape area, etc.) must be allocated for vegetation. Calculations are required to indicate how potable water use is reduced by 50%. See the LEED Reference Guide For Green Building Design And Construction (Schools) 2009 Edition for calculation details.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Efficient Landscaping, Reduce by 50%

w1.1

Limit or eliminate the use of potable water, or other natural surface or subsurface water resources available on or near the project site, for landscape irrigation. This credit is required, if feasible, for all projects. Reduce potable water consumption for irrigation by 50%.

Provide ground vegetation comprised strictly of plant materials that require minimal amount of potable water for irrigation. Determination of 50% reduction in potable water consumption must be modeled after a mid-summer baseline case. It must also result from any combination of the following factors: irrigation efficiency, Plant species, density and microclimate factor, Harvested rainwater, Use of captured rainwater, Use of water treated and conveyed by a public agency specifically for non-potable uses.

In keeping with USGBC credit interpretation Rulings, a minimum of 5% of the total building site area (including building footprint, hardscape area, etc.) must be allocated for vegetation. Calculations are required to indicate how potable water use is reduced by 50%. See the LEED Reference Guide For Green Building Design And Construction (Schools) 2009 Edition for calculation details.

A minimum of 5% of the total building site area must be allocated for vegetation. Projects without vegetation on the grounds must include a roof or courtyard garden space or outdoor planters. Allocated space for the garden or planters must at a minimum be 5% of the total building site area. Reduction in potable water consumption must be documented as described under "Requirements".

If project includes work outside the lot lines, the site boundary shall include those areas (e.g. sidewalks).

The SCA Design Requirements require use of native or adapted plants with no permanent irrigation system at landscaped areas. SCA defers to the NYC Parks Dept. for the selection of trees that are native to the northeastern US or adapted to the climate in NYC. SCA standards require maintenance hose bibs around the building, which may be used for temporary irrigation. In addition, the SCA’s standard for athletic fields is artificial turf, which requires no irrigation. Hose bibs are not considered permanent irrigation systems and can be used for temporary irrigation during periods of drought.

Including ground cover from playgrounds and athletic fields in the pursuit of this credit is optional. However, if these areas are included in this credit’s calculation, they must be included in all other applicable credit calculations. Design Team must receive approval from the SCA to pursue this credit using irrigation because of the potential cost involved. On the atypical project where it is determined to utilize an irrigation system, one option to consider is the use of captured rainwater or stormwater.
For sites that use storm water tanks and filtration systems to meet State Pollution Discharge Elimination System (SPDES) requirements, the storm water system may be modified with SCA permission to allow use of captured rainwater for irrigation.

DESIGN DEVELOPMENT

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents. Include statements that no permanent irrigation is being provided.
- Provide calculations to verify that the vegetated area provided meets the 5% requirement.
- If the project is atypical and the Design Team recommends an irrigation system for this project, submit narrative indicating such and indicate potable water use reduction techniques.

60% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Provide calculations in support of the chosen option demonstrating that the 50% reduction in water use requirements have been met.
- Include technical data on plants verifying plants meet native or adaptive species requirements.
- Incorporate native or adapted plants on landscaping drawings and in specifications.

If irrigation is to be provided:

- Submit documentation as required for contract specifications and commissioning of irrigation systems. Incorporate requirements in specifications.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 WE Credit 1
Water Efficient Landscaping

SCA DESIGN REQUIREMENTS

DR 2.5.1 Trees, Shrubs, Ground Cover and Lawns
DR 6.17 Wall Hydrant Requirements for Window Washing and General Maintenance

SCA STANDARD SPECIFICATIONS

02900 Landscaping

SCA STANDARD DETAILS

None
WATER EFFICIENT LANDSCAPING, NO POTABLE WATER USE OR IRRIGATION

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit or eliminate the use of potable water, or other natural surface or subsurface water resources available on or near the project site, for landscape irrigation.</td>
<td>No Potable Water Use or Irrigation. Meet the requirements for Credit W1.1 AND PATH 1 Use only captured rainwater, recycled wastewater, recycled graywater or water treated and conveyed by a public agency specifically for non-potable uses for irrigation. OR PATH 2 Install landscaping that does not require permanent irrigation systems. Temporary irrigation systems used for plant establishment are allowed only if removed within 1 year of installation. In keeping with USGBC credit interpretation Rulings, a minimum of 5% of the total building site area (including building footprint, hardscape area, etc.) must be allocated for vegetation.</td>
<td>A minimum of 5% of the total building site area (including building footprint, hardscape area, parking footprint, etc.) must be allocated for vegetation. Projects without vegetation on the grounds must include a roof or courtyard garden space or outdoor planters. Allocated space for the garden or planters must at a minimum be 5% of the total building site area If project includes work outside the lot lines, the site boundary shall include those areas (e.g. sidewalks). The SCA Design Requirements require use of native or adapted plants with no permanent irrigation system at landscaped areas. SCA defers to the NYC Parks Dept. for the selection of trees that are native to the northeastern US or adapted to the climate in NY City. SCA standards require maintenance hose bibs around the building, which may be used for temporary irrigation. In addition, the SCA’s standard for athletic fields is artificial turf, which requires no irrigation. Hose bibbs are not considered permanent irrigation systems and can be used for temporary irrigation during periods of drought. Including ground cover from playgrounds and athletic fields in the pursuit of this credit is optional. However, if these areas are included in this credit’s calculation, they must be included in all other applicable credit calculations. Design Team must receive approval from the SCA to pursue this credit using irrigation because of the potential costs involved. On the atypical project where it is determined to utilize an irrigation system, one option to consider is the use of captured rainwater or stormwater.</td>
</tr>
</tbody>
</table>
For sites that use storm water tanks and filtration systems to meet State Pollution Discharge Elimination System (SPDES) requirements, the storm water system may be modified with SCA permission to allow use of captured rainwater for irrigation.

DESIGN DEVELOPMENT

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents. Include statements that no permanent irrigation is being provided.
- Provide calculations to verify that the vegetated area provided meets the 5% requirement.
- If the project is atypical and the Design Team recommends an irrigation system for this project, submit narrative indicating such and indicate potable water use reduction techniques.

60% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Provide calculations in support of the chosen option demonstrating that the requirements of credit W1.1 have been met.
- Include technical data on plants verifying plants meet native or adaptive species requirements.
- Incorporate native or adapted plants on landscaping drawings and in specifications.

If irrigation is to be provided:

- Submit documentation as required for contract specifications and commissioning of irrigation systems. Incorporate requirements in specifications.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT AND CIVIL ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

REFERENCES

LEED for Schools
2009 WE Credit 1
Water Efficient Landscaping

SCA DESIGN REQUIREMENTS
DR 2.5.1 Trees, Shrubs, Ground Cover and Lawns
DR 6.17 Wall Hydrant Requirements for Window Washing and General Maintenance

SCA STANDARD SPECIFICATIONS
02900 Landscaping

SCA STANDARD DETAILS
None

CONSTRUCTION
No credit submittal
W2.1R MINIMUM WATER USE REDUCTION

INTENT

Reduce potable water consumption within school buildings by the use of efficient plumbing fixtures in order to reduce the burden on municipal water supply and wastewater systems.

This credit is required for all projects.

REQUIREMENTS

Employ strategies that in aggregate use 20% less water than the water use baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992 (and as amended) and 2005 fixture performance requirements.

Calculate the baseline according to the commercial baseline outlined below. Calculations are based on estimated occupant usage and must include only the following fixtures and fixture fittings (as applicable to the project scope): water closets, urinals, lavatory faucets, showers, kitchen sink faucets and pre-rinse spray valves.

The following fixtures, fittings and appliances are outside the scope of the water use reduction calculation:

- Commercial Steam Cookers
- Commercial Dishwashers
- Automatic Commercial Ice Makers
- Commercial (family-sized) Clothes Washers

Calculating Occupancy

Identify the total number of building occupants for each occupancy type. In buildings with multiple shifts, use the number of full-time equivalents (FTEs) from all shifts.

- Full-time staff
- Part-time staff
- Students
- Transients (volunteers, visitors, parents, etc.)

Calculate the FTE number of occupants based on a standard 8-hour occupancy period. An 8-hour occupant has an FTE value of 1.0, and part-time occupants have an FTE value based on their hours per day divided by 8. FTE calculations for each shift of the project must be used consistently for all LEED credits. Estimate the transient building occupants, such as volunteers, visitors, and customers. Transient occupants can be reported as either daily totals or full-time equivalents. When using daily totals for transients, match the fixture uses for each occupancy type with the values shown in Table 2 (e.g., for the daily total of volunteers counted as transients, assume 0.5 lavatory faucet uses per transient volunteer). If transients are reported as a daily full-time equivalent value, fixture uses for FTEs must be assumed regardless of the transient population’s identity (e.g., for volunteers reported as FTEs, assume 3 lavatory faucet uses per volunteer FTE). Use a transient occupancy number that is a representative daily average over the course of a year.

Transients include building visitors and other part-time or occasional building occupants. In deciding whether to count individuals as transients or FTE occupants, consider their plumbing fixture use patterns. For example, a volunteer who serves 4 hours each day in an elementary school will likely have the same plumbing usage patterns as FTE staff. This volunteer could therefore be considered to have a staff FTE value of 0.5. On the other hand, an individual who attends a high school basketball game may be expected to use the water closets and lavatory faucets in the school building only 50% of the time, and therefore should be reported as a

| Table 1
<table>
<thead>
<tr>
<th>Commercial Fixtures, Fittings, and Appliances</th>
<th>Current Baseline for fixtures used in schools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial toilets</td>
<td>1.6 gallons per flush (gpf)</td>
</tr>
<tr>
<td>Commercial urinals</td>
<td>1.0 (gpf)</td>
</tr>
<tr>
<td>Commercial lavatory (restroom) faucets</td>
<td>0.5 (gpm) at 60 (psi) OR 0.25 gallons per cycle for metering faucets</td>
</tr>
<tr>
<td>Commercial pre-rinse spray valves (for food service applications)</td>
<td>Flow rate is less or equals to 1.6 (gpm) (no pressure specified; no performance requirement)</td>
</tr>
</tbody>
</table>
The SCA standards require the use of the following water-saving fixtures for all projects: aerated metered faucets, low-flow toilets, low-flow showers and low-flow urinals. Schools will typically achieve 35% water use reduction in combination with the other water-saving fixtures in the Standard Specifications.

For atypical projects that cannot achieve the 35% water use reduction — but must achieve 20% or 30% required by LL86/05, the most cost effective way to achieve water use reduction is to use water conserving faucets and urinals. Projects where this might apply include major school modernizations and renovations of leased buildings where not all fixtures are to be replaced.

In modernization projects, existing fixtures that are to remain must be included in the design case calculations with their actual flow rate and an indicated assumption about percentage of occupant users for those fixtures.

The above would also apply to addition/modernizations where the addition is over 50% of the size of the building being enlarged.

DESIGN DEVELOPMENT

ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

ENGINEER’S RESPONSIBILITY

- Submit Water Use Reduction Form.
- Incorporate fixtures per Standard Specifications.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit LL 86/05 Form with water use reduction information.

CONSTRUCTION

No credit submittal.

Table 2

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>FTE</th>
<th>Student</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Closet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----Female</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>-----Male</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Urinals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----Female</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-----Male</td>
<td>2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Lavaratory faucet, duration 15 sec; 12 sec with autocontrol</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Shower</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kitchen sink, nonresidential, duration 15 sec</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

LEED for Schools 2009 WE Pr 1
Water Use Reduction

The Energy Policy Act (EPAct) of 1992 (and as amended)

The Energy Policy Act (EPAct) of 2005

Local Law 86/05

SCA DESIGN REQUIREMENTS

6.1.16 Compliance with LL86/05

SCA STANDARD SPECIFICATIONS

15440 Plumbing Fixtures

SCA STANDARD DETAILS

None
To further reduce potable water consumption within school buildings by the use of efficient plumbing fixtures in order to reduce the burden on municipal water supply and wastewater systems.

Credits W2.2, W2.3 and W2.4 are required, if feasible, for all projects.

Employ strategies that in aggregate use less water than the water use baseline calculated for the building (not including irrigation) after meeting the Energy Policy Act of 1992 (and as amended) and 2005 fixture performance requirements. Calculations are based on estimated occupant usage and shall include only the following fixtures: water closets, urinals, lavatory faucets, showers, kitchen and food service area sinks.

The SCA objective is 40% water use reduction, which achieves credits W.2.2R W2.3R and W2.4, though 35% is typically achievable.

For major school modernizations and renovations of leased building sites, there may be atypical projects that, because of their more limited scope, may not achieve 35% water use reduction. For projects where the installation or replacement cost of plumbing fixtures is over $500,000, per LL86/05 these projects must achieve a minimum of 20% water use reduction in aggregate for the facility, or 30% if waterless urinals are approved by the Department of Buildings.

Note that while the text of LL86/05 references LEED 2.1, the rules for implementing LL86/05 clarify that the current version of LEED should be the

<table>
<thead>
<tr>
<th>Commercial Fixtures, Fittings, and Appliances</th>
<th>Current Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial toilets</td>
<td>1.6 gallons per flush (gpf)*</td>
</tr>
<tr>
<td></td>
<td>Except blow-out fixtures: 3.5 (gpf)</td>
</tr>
<tr>
<td>Commercial urinals</td>
<td>1.0(gpf)</td>
</tr>
<tr>
<td>Commercial lavatory (restroom) faucets</td>
<td>0.5 (gpm) at 60 (psi) OR 0.25 gallons per cycle for metering faucets</td>
</tr>
<tr>
<td>Commercial prerinse spray valves (for food service applications)</td>
<td>Flow rate is less or equals to 1.6 (gpm) (no pressure specified; no performance requirement)</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>FTE</th>
<th>Student</th>
<th>Transient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Closet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----Female</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>-----Male</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>Urinals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----Female</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-----Male</td>
<td>2</td>
<td>2</td>
<td>0.4</td>
</tr>
<tr>
<td>Lavaratory faucet, duration 15 sec; 12 sec with autocontrol</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>Shower</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kitchen sink, nonresidential, duration 15 sec</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The SCA standards require the use of the following water-saving fixtures for all projects: aerated metered faucets, low-flow toilets, low-flow showers and low-flow urinals. Schools will typically achieve 35% water use reduction in combination with the other water-saving fixtures in the Standard Specifications.

For atypical projects that cannot achieve the 35% water use reduction – but must achieve 20% or 30% required by LL86/05, the most cost effective way to achieve water use reduction is to use water conserving faucets and urinals. Projects where this might apply include major school modernizations and renovations of leased buildings where not all fixtures are to be replaced.

In modernization projects existing fixtures that are to remain must be included in the design case calculations with their actual flow rate and an indicated assumption about percentage of occupant users for those fixtures.

The above would also apply to addition/modernizations where the addition is over 50% of the size of the building being enlarged.

SCHEMATIC DESIGN
No credit submittal.

DESIGN DEVELOPMENT
ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS
ENGINEER’S RESPONSIBILITY
- Submit Water Use Reduction Form.
- Incorporate fixtures per Standard Specifications.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
ENGINEER’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.
- Submit LL 86/05 Form with water use reduction information.

CONSTRUCTION
No credit submittal.

Projected Water Use Reduction for Typical IS/HS (TO BE REVISED)

- **Conventional Fixture**
- **Water Conserving Fixture**

Water Conserving Measures

- Low Flow Showerhead
- EPA Watersource
- Low Flow Urinal
- Aerated Metered Faucets
ENERGY
Energy efficient schools that are properly commissioned will reduce their environmental impact and operational costs while improving indoor air quality. Efficient design saves money while conserving non-renewable energy resources and reduces atmospheric emissions of pollutants and greenhouse gases. Efficient designs include properly sized equipment and systems while providing the required heating, cooling and ventilation.

The Quality Assurance function of commissioning has always played an important role at the SCA. In recognition of the increasing importance of commissioning, it is now recognized in a separate plan. Commissioning, maintenance and training are vitally important to the performance of the school and to the proper operation of its systems, and are critical to maintaining energy efficiency.

The SCA has investigated various HVAC systems using computerized energy modeling to conform to the requirements of New York City LL86/05. Mandated requirements exceed minimum code and LEED 2009 energy requirements. The selected HVAC system design and other conservation measures achieve an optimal balance between energy savings, required performance and cost. These systems are a critical part of an integrated building design approach. It is the intent of the SCA to design and construct energy efficient buildings that conform to its building design standards to consistently provide a high-quality educational environment for students, teachers, administrators and operating staff.
Fundamental Commissioning of the Building Energy Systems

INTENT

Verify that the project’s energy related systems are installed, calibrated and perform according to the owner’s project requirements, basis of design, and construction documents.

Benefits of commissioning include
- Reduced energy use
- Lower operating costs
- Reduced contractor callbacks
- Better building documentation
- Improved occupant productivity, and verification that the systems perform in accordance with the owner’s project requirements.

This credit is required for all projects.

REQUIREMENTS

The SCA/DOE system of whole building commissioning goes well beyond LEED requirements for commissioning. SCA/DOE whole building commissioning is described in the SCA/DOE commissioning policies and procedures, and in related SCA Design Requirements and Standard Specifications.

Below are the commissioning requirements to be carried out under whole building commissioning that are specifically required to comply with this rating system.

The following commissioning process activities shall be completed by the project team.

The SCA/DOE commissioning authority shall:
- Designate an individual as the Commissioning Authority (CxA) to lead, review and oversee the completion of the commissioning process activities.
- The CxA shall have documented commissioning authority experience in at least two building projects.
- The individual serving as the CxA shall be independent of the project’s design and construction management, though they may be employees of the firms providing those services. The CxA may be a qualified employee or consultant of the Owner.
- The CxA shall report results, findings and recommendations directly to the Owner.
- For projects smaller than 50,000 gross square feet, the CxA may include qualified persons on the design or construction teams who have the required experience. The Owner shall document the Owner’s Project Requirements (OPR). The design team shall develop the Basis of Design (BOD). The CxA shall review these documents for clarity and completeness. The Owner and design team shall be responsible for updates to their respective documents.

- Develop and incorporate commissioning requirements into the construction documents.
- Develop and implement a commissioning plan.
- Verify the installation and performance of the systems to be commissioned.
- Complete a summary commissioning report.

COMMISSIONED SYSTEMS

Commissioning process activities shall be completed for the following energy-related systems, at a minimum:
- Heating, ventilating, air conditioning, and refrigeration (HVAC&R) systems (mechanical and passive) and associated controls
- Lighting and daylighting controls
- Domestic hot water systems
- Renewable energy systems (wind, solar etc.)
- Emergency Generator
- Fire Alarm System
The SCA/DOE in-house commissioning group consists of staff from the SCA QA/QC Department and the Division of School Facilities (DSF). An individual CxA will be assigned to a project from this group.

This group develops and maintains a standard School Commissioning Plan and Plan Matrix. Design Teams modify this Plan Matrix to be project specific. The Design Team’s must advise the commissioning agent if a building system or feature incorporated in the design is not on the standard Matrix.

Commissioning requirements are included through the SCA Standard Specifications.

For the 100% design submission, the Design Team must update the matrix and BOD as required. During construction, the Design Team reviews commissioning-related submittals including as-built documents and operating & maintenance manuals. The Design Team also provides technical support to the commissioning agent as required to address deficient or varying field conditions.

The Contractor’s responsibilities as outlined in the Standard Specifications include:
• Submitting a copy of the project specific Commissioning Plan (developed by the SCA with design team input) that has been signed by the Contractor, sub-Contractors and vendors acknowledging responsibility for commissioning items.
• Attending commissioning meetings.
• Performing testing of systems according to contract requirements.

DESIGN DEVELOPMENT

ARCHITECT AND ENGINEER’S RESPONSIBILITY
• Submit narrative summarizing standards to be incorporated and description(s) of building systems not included in the Standard School Commissioning Matrix.
• Submit School Commissioning Matrix modified for particular project.

COMMISSIONING AGENT’S RESPONSIBILITY
• Review narrative and matrix submitted with the DD submission, OPR, BOD and design development documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
• Incorporate commissioning requirements into construction documents
• Submit updated matrix if matrix has changed since design development.

COMMISSIONING AGENTS RESPONSIBILITY
• Review matrix, BOD and construction documents.
• Develop Commissioning Plan.

100% CONSTRUCTION DOCUMENTS

ARCHITECTS & ENGINEERING RESPONSIBILITY
• Submit updated matrix if matrix has changed since 60%

CONSTRUCTION

COMMISSIONING AGENT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

For the six systems indicated:
• Submit review of Contractor submittals for compliance with the OPR and BOD. This review to be concurrent with A/E review and to be provided to A/E as well as the Contractor.
• Review systems manual submitted by Contractor. Submit recommended schedule of maintenance requirements and frequency as required.
• Verify the installation and performance
Intent

To begin the commissioning process early in the design process and execute additional activities after systems performance verification is completed.

This credit is required for all projects.

Requirements

Implement through the Total Building Commissioning Unit the following additional Commissioning process activities in addition to the requirements of E1.1R - Fundamental Commissioning of Building Energy Systems:

1. Prior to the start of the construction documents phase, designate an independent commissioning authority (CxA) to lead, review, and oversee the completion of all commissioning process activities.
2. The CxA must have documented commissioning authority experience in at least two building projects.
3. The individual serving as the CxA:
 - Must be independent of the work of design and construction.
 - Must not be an employee of the design firm, though he or she may be contracted through them.
 - Must not be an employee of, or contracted through, a contractor or construction manager holding construction contracts.
 - May be a qualified employee or consultant of the owner.
 - The CxA must report results, findings and recommendations directly to the owner.
 - The CxA must conduct, at a minimum, one commissioning design review of the owner’s project requirements basis of design, and design documents prior to the mid-construction documents phase and back-check the review comments in the subsequent design submission.
 - The CxA must review contractor submittals applicable to systems being commissioned for compliance with the owner’s project requirements and basis of design. This review must be concurrent with the review of the architect or engineer of record and submitted to the design team and the owner.
 - The CxA or other project team members must develop a systems manual that provides future operating staff the information needed to understand and optimally operate the commissioned systems.
 - The CxA or other project team members must verify that the requirements for training operating personnel and building occupants have been completed.
 - The CxA must be involved in reviewing the operation of the building with operations and maintenance (O&M) staff and occupants within ten-months after substantial completion. A plan for resolving outstanding commissioning-related issues must be included.
The commissioning effort can affect many performance-based features encouraged in the Green Schools Guide. Consider including in commissioning the energy-using systems addressed by the following credits:

- **S6.1R**: Light Pollution Reduction
- **E3.1R**: Measurement and Verification
- **Q1.1R**: Minimum Indoor Air Quality Performance
- **Q1.3R**: Outdoor Air Delivery Monitoring
- **Q1.4R**: Increased Ventilation
- **Q4.1R**: Indoor Chemical and Pollutant Source Control
- **Q5.1R & Q5.2R**: Controllability of Systems
- **Q6.1R**: Thermal Comfort

Note that **E1.2R**, Enhanced Commissioning, goes beyond the minimum threshold for commissioning activities, as defined by the related prerequisite.

DESIGN DEVELOPMENT

ARCHITECT AND ENGINEER’S RESPONSIBILITY
- Submit narrative stating project will be subject to enhanced commissioning and what will be performed.

60% CONSTRUCTION DOCUMENTS

COMMISSIONING AGENT'S RESPONSIBILITY
- Conduct commissioning design review of BOD and contract documents

100% CONSTRUCTION DOCUMENTS
No credit submittal.

CONSTRUCTION

COMMISSIONING AGENT’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.
For the five systems indicated:
- Submit review of Contractor submittals for compliance with the OPR and BOD. This review to be concurrent with A/E review and to be provided to A/E as well as the Contractor.
- Review systems manual submitted by Contractor.
- Submit recommended schedule of maintenance requirements and frequency as required.
- Verify the installation and performance of these systems.
- Verify that operating personnel training has occurred.
- Complete the Summary Commissioning Report

OCCUPANCY

COMMISSIONING AGENT’S RESPONSIBILITY
- Review building operations within 10 months after substantial completion.

LEED for Schools 2009 Credit EA 3

Enhanced Commissioning

NY CHPS Version 1.0 Credit 3.3.1
Third Party Commissioning

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
S01650 Facility Start-up, Demonstration, and Training
S01660 Commissioning References to Commissioning throughout specifications.

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce stratospheric ozone depletion. This credit is required for all projects.</td>
<td>No CFC-based refrigerants shall be used in new base building equipment for heating, ventilation, air conditioning and refrigeration systems (HVAC&R). For modernization projects, existing base building HVAC equipment containing CFC-based refrigerants must not be re-used; non-CFC systems shall be used in replacement equipment. Incorporate SCA standard “non-CFC” equipment specifications in design and construction documents.</td>
</tr>
</tbody>
</table>
HVAC&R-based equipment and refrigerants referenced in the SCA standards do not use CFC based refrigerants.

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing how compliance will be achieved.
- Identify applicable SCA standards to be incorporated into the Design Documents. For modernizations/renovations, describe scope relating to existing base building HVAC equipment that contains CFC refrigerants.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- For modernizations/renovations, submit an inventory of existing HVAC&R equipment currently using CFC-based refrigerants that are to be removed. When re-using existing base building HVAC equipment, provide a complete and comprehensive CFC phase-out conversion prior to project completion.
- Submit updated documentation as necessary through to 100%

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

LEED for Schools 2009 Credit EA Pr 3
Fundamental Refrigerant Management

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11400</td>
<td>Food Service Equipment</td>
</tr>
<tr>
<td>11450</td>
<td>Domestic Type Equipment</td>
</tr>
<tr>
<td>11452</td>
<td>Culinary Art Lab & Equipment</td>
</tr>
<tr>
<td>13031</td>
<td>Walk-in Trash Refrigerator</td>
</tr>
<tr>
<td>15650</td>
<td>Split Air Cooled Chillers</td>
</tr>
<tr>
<td>15660</td>
<td>Packaged Modular Outdoor Chillers</td>
</tr>
<tr>
<td>15781</td>
<td>Packaged Heating and Cooling Units</td>
</tr>
<tr>
<td>15783</td>
<td>Split Heat Pump System</td>
</tr>
<tr>
<td>15853</td>
<td>Custom Packaged Rooftop Heating and Cooling Units</td>
</tr>
<tr>
<td>15854</td>
<td>Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)</td>
</tr>
<tr>
<td>15855</td>
<td>Commercial Packaged Rooftop Heating and Cooling Units (Constant Volume System)</td>
</tr>
<tr>
<td>15858</td>
<td>Window Air Conditioners</td>
</tr>
</tbody>
</table>

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
INTENT

Reduce ozone depletion and support early compliance with the Montreal Protocol while minimizing direct contributions to global warming.

This credit is required, if feasible, for all projects.

REQUIREMENTS

Select refrigerants and HVAC&R equipment that minimize or eliminate the emission of compounds that contribute to ozone depletion and global warming.

Complete project-specific average Refrigerant Impact Form following the example under LEED Credit EA 4 to indicate successful compliance with this credit. Enter the number and size of units along with the selected refrigerant. Designer must use the actual refrigerant charge of each of the pieces of HVAC&R equipment.

For a detailed explanation of these calculations, see LEED for Schools 2009 Reference Guide Credit EA 4 Enhanced Refrigerant Management for comparison tables regarding: ozone depletion and global warming potentials of specific refrigerants, cooling efficiency of various refrigerants and allowable equipment life span.

Do not operate or install fire suppression systems that contain ozone depleting substances such as CFCs, hydrofluorocarbons (HCFC) or Halons.

BEST PRACTICES AND IMPLEMENTATION

The base building HVAC&R equipment shall comply with the formula contained on the Refrigerant Impact Form, which sets a maximum threshold for the combined contributions to ozone depletion and global warming potential such that the calculated index number is less than or equal to 100.

Utilize fire suppression systems that do not contain HCFCs or Halons.
Enhanced Refrigerant Management: Credit E2.2

Design Development

HVAC Engineer’s Responsibility
- Submit a narrative summarizing how compliance will be achieved.
- Identify applicable SCA standards to be incorporated into the Design Documents.

60% Construction Documents

HVAC Engineer’s Responsibility
- Submit a completed Refrigerant Impact Form.
- Submit updated documentation as necessary through to 100%.

100% Construction Documents

HVAC Engineer’s Responsibility
- Submit Certification Form with completed information for this credit.

Construction

No credit submittal.

SCA Design Requirements

None

SCA Standard Specifications

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11400</td>
<td>Food Service Equipment</td>
</tr>
<tr>
<td>11450</td>
<td>Domestic Type Equipment</td>
</tr>
<tr>
<td>11452</td>
<td>Culinary Art Lab & Equipment</td>
</tr>
<tr>
<td>13031</td>
<td>Walk-in Trash Refrigerator</td>
</tr>
<tr>
<td>15650</td>
<td>Split Air Cooled Chillers</td>
</tr>
<tr>
<td>15660</td>
<td>Packaged Modular Outdoor Chillers</td>
</tr>
<tr>
<td>15781</td>
<td>Packaged Heating and Cooling Units</td>
</tr>
<tr>
<td>15783</td>
<td>Split Heat Pump System</td>
</tr>
<tr>
<td>15853</td>
<td>Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)</td>
</tr>
<tr>
<td>15854</td>
<td>Custom Packaged Rooftop Heating and Cooling Units (Constant Volume System)</td>
</tr>
<tr>
<td>15855</td>
<td>Commercial Packaged Rooftop Heating and Cooling Units</td>
</tr>
<tr>
<td>15858</td>
<td>Window Air Conditioners</td>
</tr>
</tbody>
</table>

SCA Standard Details

None

Other References

None
Provide for the ongoing measurement and accountability of building energy consumption over time.

This credit is required for all projects.

1. Design and install a sub-metering system, based on SCA standards, for measuring major fuel and energy usage by the domestic hot water heater, building heating and cooling equipment, as well as major electrical loads including lighting loads, roof-top HVAC units, boilers and chillers. Integrate the data collection and monitoring into the Building Management System (BMS), providing for the monitoring, display, calculation, reporting and trend-logging of the fuel and energy usage.

2. The Measurement and Verification (M&V) system must be designed to allow for comparing predicted performance to actual performance, broken down by component or system as appropriate. Furthermore, the M&V system is intended to be used past the warranty period functioning as a diagnostic tool for the facility operators to diagnose specific equipment operation. The M&V system must be designed to allow for comparing period-to-period performance, broken down by component or system as appropriate.

3. Incorporate the M&V system in the design and construction documents.

The SCA standards require a system for measurement and verification. The SCA systems incorporate sensors, sub-meters and instrumentation, as well as a Building Management System that provides the energy information in a useful manner to the operator. Some specific elements included in the SCA standards are gas flow meters for heating equipment and domestic hot water heaters, and watt-meters at lighting panels to monitor significant lighting loads such as in the Auditorium and Gymnasium.

The SCA standard for predicting the baseline energy performance for new buildings shall be the International Performance Measurement & Verification Protocol (IPMVP) Volume III Option C: Whole Building Comparison.

Option C involves the use of utility meters and/or aggregated sub-meters to determine the Post-Construction Energy use of the facility at the whole-building level. The Projected Baseline Energy use is the energy use of a proto-typical school building that was modeled and then validated with a "control group" of similar buildings without the Energy Conservation Measures (ECMs) or design enhancements. In this regard, the Projected Baseline Energy use is a stipulation.

The SCA demonstrated that Option C is appropriate to NYC public schools due to the great similarities between school systems for HVAC, lighting, electric and domestic water heating, and the fact that construction practices of the SCA are standardized and that the locations of the NYC schools are similar.
This credit involves criteria relating to the implementation of the Measurement and Verification System for a period of no less than one year of post-construction occupancy. The DOE/Division of School Facilities will use the system to monitor energy performance and alert staff that equipment maintenance is required. Energy system performance will be evaluated when LL86/05 annual reports are submitted to the Mayor’s Office of Operations.

Design Teams and Contractors participate with the SCA commissioning agent and the Facilities Management System Integrator to verify that the BMS system meets the owners M&V requirements, the requirements of this credit and the design intent.

For the corrective action process, consider installing diagnostics within the control system to alert the staff that equipment is not being optimally operated. Alarms to alert staff could include:

- Leaking valves in the cooling and heating coils within air handling units
- Missed economizer opportunities (e.g., faulty economizer damper controls)
- Software and manual overrides allowing equipment to operate 24/7.
- Equipment operation during unusual circumstances (e.g., boiler on when outside air temperature above 65°F)

Besides control diagnostics, consider employing retro-commissioning services or dedicating staff to investigate increases in energy usage (such a staff member is usually a resource conservation manager).

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated in the design documents. Identify any potential departures from SCA standards relating to this credit.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY

- Include Specification Sections 15970, 15973 and 15985 in the construction document submittal modified as appropriate for the specific school project and provide appropriate control diagrams on contract drawings.
- Submit updated documentation as necessary through to 100%

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

HVAC ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

REFERENCES

- LEED for Schools 2009 EA Credit 5 Measurement & Verification
- NY CHPS Version 1 Credit 3.3.8 Submetering
- SCA DESIGN REQUIREMENTS
 6.2.20 Building Management Control System / Direct Digital Control BMS/DDC
- SCA STANDARD SPECIFICATIONS
 15970 Temperature Control System (LonWorks BMS/DDC With School Operating Console)
 15973 Facility Management Systems Integration
 15985 Sequence of Operations
- SCA STANDARD DETAILS
 15985 HVAC Standard Detail Series
- OTHER REFERENCES
 Local Law 86/05
- International Performance Measurement & Verification Protocol (IPMVP)
E3.2 R

ENERGY MANAGEMENT SYSTEM CONTROLS, HVAC AND HOT WATER SYSTEMS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>While Building Management Systems (BMSs) are typically installed with new HVAC systems, care must be taken to specify and install an appropriate system for the school and its maintenance staff. This credit is required, if feasible, for all projects.</td>
<td>1. Provide for design and installation of an open protocol Building Management System in compliance with SCA Design Standards. Open protocol systems are systems that use published/non-proprietary protocols, open to all manufacturers. The SCA current standard is the LonWorks open protocol system by Echelon.</td>
<td>The SCA standardized specification sections for school Building Management System controls for HVAC systems are consistent with the requirements of this credit. The BMS system should be fully commissioned. (See credit E1.1R in this section regarding commissioning.)</td>
</tr>
<tr>
<td>2. Incorporate the BMS in the design and construction documents.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated in the design documents. Identify any potential departures from SCA standards relating to this credit.

60% CONSTRUCTION DOCUMENTS
HVAC ENGINEER’S RESPONSIBILITY
• Incorporate the BMS specifications and control diagrams into construction documents.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS
HVAC ENGINEER’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

REFERENCES

NY CHPS Version 1.0 Credit 3.3.5
 Building Management System Controls
 HVAC and Hot Water

SCA DESIGN REQUIREMENTS
 6.2.20 Building Management Control System / Direct Digital Control BMS/DDC

SCA STANDARD SPECIFICATIONS
 15970 Temperature Control System
 (LonWorks BMS/DDC With School Operating Console)
 15973 Facility Management Systems Integration
 15985 Sequence of Operations

SCA STANDARD DETAILS
 15985 HVAC Standard Detail Series

OTHER REFERENCES
None
minimum energy performance

Minimum Energy Compliance

1. Project must establish an energy performance rating goal for the facility design using EPA’s Target Finder rating tool.

2. Whole Building Energy Simulation
 Demonstrate a 10% improvement for new buildings or a 5% improvement for major renovations to existing buildings in the proposed building performance rating compared to the baseline building performance rating per ASHRAE/IESNA Standard 90.1-2007 (with errata but without addenda) by a whole building project simulation using the Building Performance Rating Method in Appendix G of the Standard.
 Appendix G of Standard 90.1-2007 requires that the energy analysis done for the Building Performance Rating Method include ALL of the energy costs within and associated with the building project. To achieve points using this credit, the proposed design must comply with:
 - The mandatory provisions (Sections 5.4, 6.4, 7.4, 8.4, 9.4 and 10.4) of ASHRAE/IESNA Standard 90.1-2007 (without addenda);
 - Must include all the energy costs within and associated with the building project.

For the purpose of this analysis, process energy is considered to include, but is not limited to, office and general miscellaneous equipment, computers, elevators and escalators, kitchen cooking and refrigeration, laundry washing and drying. Regulated (non-process) energy includes lighting (such as for the interior, façade, or building grounds, except as noted above), HVAC (such as for space heating, space cooling, fans, pumps, toilet exhaust, parking garage ventilation, kitchen hood exhaust, etc.), and service water heating for domestic or space heating purposes.

Process loads shall be identical for both the baseline building performance rating and for the proposed building performance rating. However, project teams may follow the Exceptional Calculation Method (ASHRAE 90.1-2007 G2.5) to document measures that reduce process loads. Documentation of process load energy savings shall include a list of the assumptions made for both the base and proposed design, and theoretical or empirical information supporting these assumptions.

Note that projects required to comply with Local Law 86/05 must achieve a minimum of 20% energy use reduction over those mandated by 2007 New York State ECCC.
With the beginning of LEED 2009, the baseline for calculating total energy cost saving changed to ASHRAE 90.1-2007 Appendix G, with the minimum requirement decreased from 14% to 10%.

Furthermore, Local Law 86-05 requires that a design energy model demonstrate at least 20% regulated energy cost savings vs a model complying with the requirements of the ASHRAE 90.1-2004 or 2007 (depending when project is filed) Standard using the Energy Cost Budget Method of Chapter 11.

By way of prototypical energy analyses, it has been demonstrated which parametric configurations meet the minimum energy saving requirement described above.

The double-page diagram, which follows this credit, schematically depicts the components of the prototypical HVAC system and other energy conservation measures that are incorporated in the SCA Design Requirements, Standard Specifications and Standard Details.

If directed by the Authority to investigate alternative systems, perform the calculations demonstrating compliance with ASHRAE 90.1.2007 and compliance with Local Law 86/05 and Credit A3.1 (Optimize Energy Performance) should be pursued.

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated in the design documents.
- List individual parameters required in DR1.3.1.10 and submit table from DR1.1.5.2. Identify any potential departures from SCA standards relating to this credit.
- Describe compliance with SCA standard HVAC and lighting requirements controls and energy conservation measures to achieve compliance with this credit and LL86/05 energy reduction requirements.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY

- Submit design drawings and specifications in compliance with SCA Design Requirements.
- Submit the latest table from DR1.1.5.2. OR
- Submit calculations demonstrating compliance with ASHRAE 90.1-2007 and LL86/05 and submit drawings and specifications for alternative systems.
- Submit EPA Target Finder results, including SEDI (Statement of Energy Design Intent) signed and certified by the Engineer.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit LL86/05 Compliance Form.

CONSTRUCTION

HVAC ENGINEER’S RESPONSIBILITY

- Submit reporting forms for compliance with LL86/05.

LEED for Schools 2009 EA Pr 2
Minimum Energy Performance

SCA DESIGN REQUIREMENTS

1.1.5.2 Building Areas – Energy Saving & Non-Energy Saving Spaces
1.3.1.10 Prototypical Energy Modeling
4.2.1 Exterior Masonry Wall
6.2.0 General Overview of HVAC
6.2.3 Non-Assembly Spaces
6.2.4 Public Assembly Spaces
6.2.9 Convectors and Enclosures
6.2.11 Existing School Buildings
6.2.20 BMS/DDC Controls
7.2.1 Interior Lighting
7.2.5 Exterior/Site/Security Lighting

SCA STANDARD SPECIFICATIONS

08524 Aluminum Projected Windows
15517 Water Treatment Hydronic Sys
15540 HVAC Pumps
15565 Condensing Boilers
15781 Packaged Htg & Cooling Units
15783 Packaged Heat Pump System
15853 Custom Packaged RTUs (VAV)
15854 Custom Packaged RTUs (CV)
15855 Commercial Packaged RTUs
15930 Variable Air Terminals
15932 Active Chilled Beams
15932 DOAS Air Handling Units
15970 Temperature Control System
15973 FMS Integration
15985 Sequence of Operations
16145 Lighting Control Devices
16500 Interior Building Lighting

SCA STANDARD DETAILS

04200 Unit Masonry
15970 BMS Control Diagrams

OTHER REFERENCES

ASHRAE 90.1.2004
ASHRAE 90.1.1999
DOE: www.energycodes.gov
Energy Conservation Measures Systems Summary

The proposed energy efficiency measures are designed to meet LEED for Schools 2009 EA Pr 2 Minimum Energy Performance guidelines. This system achieves energy efficiency primarily through: (1) hydronic heating of classrooms utilizing gas fired modular condensing boilers (2) cooling by 'chilled beam' utilizing dedicated outside air units (3) improved exterior wall insulation (4) spectrally selective low-E glazing and (5) energy efficient lighting controlled by occupancy sensors (vacancy mode).

Assembly spaces have dedicated Roof Top Units to allow independent operation of mechanical systems. Carbon dioxide sensors within assembly areas ensure efficient use of energy systems.
minimum energy performance: credit e4.1r

The proposed energy efficiency measures are designed to meet LEED for Schools 2009 EA Pr 2 Minimum Energy Performance guidelines. This system achieves energy efficiency primarily through: (1) hydronic heating of classrooms utilizing gas fired modular condensing boilers (typical), improved exterior wall insulation (x), spectrally selective low-E glazing and (x) energy efficient lighting controlled by occupancy sensors.

Assembly spaces have dedicated Roof Top Units to allow independent operation of mechanical systems. Carbon dioxide sensors within assembly areas ensure efficient use of energy systems.

Spectrally Selective Low-E Glazing

- Laminated spectrally selective low-E coating allows visible daylight and blocks UV transmission while inhibiting infrared light. Graph on left compares light transmission through clear, low-E, and spectrally selective low-E glazing.

Fig. 1

Laminated spectrally selective low-E coating allows visible daylight and blocks UV transmission while inhibiting infrared light. Graph on left compares light transmission through clear, low-E, and spectrally selective low-E glazing.
HVAC SYSTEM SIZING, AVOID OVERSIZING

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design all major HVAC components such that they are correctly matched to loads to preclude unnecessary oversizing and to ensure energy efficient operation.</td>
<td>Systems shall be sized and configured to efficiently handle peak and design load conditions, but more importantly to operate in an energy-efficient manner during a wide range of partial load conditions, which are the operating ranges that HVAC systems handle most of the time.</td>
<td>Best practices for compliance are incorporated in the referenced Design Requirement.</td>
</tr>
</tbody>
</table>

This credit is required for all projects.

Submit the load calculations and a written narrative rationale for selecting the specified equipment and establishing the most efficient system size and configuration.

Systems should not be sized so tightly that there is no allowance for degradation of equipment.
CREDIT SUBMITTALS

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing how compliance will be achieved.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY

- Submit the load calculations, design drawings and a written narrative rationale for selecting the specified equipment and establishing the most efficient system size and configuration.

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

CONSTRUCTION

No credit submittal.

REFERENCES

- NY CHPS Version 1.0 Credit 3.1.2 HVAC System Sizing
- SCA DESIGN REQUIREMENTS
 - 6.2.9 Heating and Cooling Design Parameters (Load Calculations)
 - 6.2.13 Arrangement and Sizing of Equipment
 - 6.2.34 Verification of Air System Design
- SCA STANDARD SPECIFICATIONS
 - 15540 HVAC Pumps
 - 15565 Condensing Boilers
 - 15650 Split Air Cooled Chillers
 - 15660 Packaged Modular Outdoor Chillers
 - 15781 Packaged Heating and Cooling Units
 - 15783 Split Heat Pump System
 - 15852 Air Handling Units
 - 15853 Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)
 - 15854 Custom Packaged Rooftop Heating and Cooling Units (Constant Volume System)
 - 15855 Commercial Packaged Rooftop Heating and Cooling Units
 - 15932 - Active Chilled Beam
 - 15933 - Dedicated Outside Air System (DOAS) Air Handling Units (Constant Volume System)
- SCA STANDARD DETAILS
 - None
- OTHER REFERENCES
 - None

HVAC SYSTEM SIZING, AVOID OVERSIZING: CREDIT E4.2R

89
Encourage the development and use of grid-source, renewable energy technologies on a net-zero pollution basis.

This credit is required for all projects.

Provide at least 35% of the building’s electricity from renewable sources by engaging in at least a two-year renewable energy contract. Renewable sources are as defined by the Center for Resource Solutions (SRS) Green-e products certification requirements.

All purchases of green power shall be based on the quantity of energy consumed, not the cost.

OPTION 1. Calculate Baseline
Use the annual electricity consumption from the results of LEED for Schools 2009 EA Credit 1: Optimize Energy Performance, using either prototypical or project specific modeling results which ever is appropriate for the project.

OR

OPTION 2. Estimate Electricity
Use the U.S. Department of Energy’s Commercial Buildings Energy Consumption Survey database to determine the estimated electricity use. See Table 1

Table 1 summarizes median annual electrical intensities (kWh/sf/yr) for different building types, based on data from the latest survey. The energy intensity multiplied by the square footage of the project represents the total amount of green power (in kWh) that would need to be purchased over a 2-year period to qualify for this credit using this option.

There is one approach for achieving this credit.

The City of New York purchases wind credits that support the production of approximately 29,000 MWH a year. The City has arranged with the U.S. Green Buildings Council (USGBC) to utilize this purchase in order to qualify for green power credits that contribute to the achievement of a LEED® rating on city projects.

An application may be submitted once construction has begun, i.e. after the Certificate to Proceed into Construction has been approved by OMB. In order to apply, the agency that controls the expenditure of city funds on the project must complete both the Design Phase and Construction Phase portions of the online form entitled 2009 REPORTING FORM for Project Subject to LEED® Rating and/or Water Use Reduction Provisions of Local Law 86 of 2005, including the three lines, highlighted in green, that are related to green power.

The Mayor’s Office of Environmental Coordination (MOEC), in consultation with Office of Management and Budget (OMB) and the Department of Citywide Administrative Services (DCAS), will review each application and DCAS will track those which are approved. If approved, the requested green power allocation will be processed by DCAS, who will transmit confirmation to the appropriate parties.
Table 1

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Median Electrical Intensity (kWh/sf-yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>6.6</td>
</tr>
<tr>
<td>Food Sales</td>
<td>58.9</td>
</tr>
<tr>
<td>Food Service</td>
<td>28.7</td>
</tr>
<tr>
<td>Office</td>
<td>11.7</td>
</tr>
<tr>
<td>Public Assembly</td>
<td>6.8</td>
</tr>
<tr>
<td>Public Order & Safety</td>
<td>4.1</td>
</tr>
<tr>
<td>Other</td>
<td>13.8</td>
</tr>
</tbody>
</table>

REFERENCES

LEED for Schools 2009 EA Credit 6 Green Power

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
Green-e Program
www.green-e.org

US EPA
www.epa.gov/greenpower

NYC MOEC

DESIGN DEVELOPMENT
Submit a narrative that credit will be pursued.

60% CONSTRUCTION DOCUMENTS
No credit submittal.

100% CONSTRUCTION DOCUMENTS
HVAC ENGINEER’S RESPONSIBILITY
- Include calculation of annual Green Power Allocation Request on NYC LL86/05 LEED Reporting Form using lines 39-40-41.

CONSTRUCTION
- SCA will submit request to the MOEC
ARCHITECT’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.
The NYC Department of Sanitation (DSNY) website reports that 12,000 tons per day of garbage are exported from New York City to outlying incinerators and landfills.

The selection of materials used in a construction project, and the manner in which materials are disposed of from construction sites and operating school facilities, have a significant impact on the natural and man-made environment. The purpose of this section is to encourage school design and construction that reduces the use of virgin natural resources and decreases the volume of waste materials disposed. This is achieved by:

- Requiring waste material recycling throughout the construction process.
- Limiting waste by encouraging re-use of existing structures and materials.
- Mandating selection of materials with high-recycled content.
- Providing for post-occupancy recycling in school buildings.

Since recycling forms the basis of students’ first experience in environmental stewardship, it is important that the materials and building components of their schools are chosen, used, and disposed of responsibly.
M1.1r

INTENT

To facilitate the reduction of waste generation by building occupants that is hauled to and disposed of in landfills.

This credit is required for all projects.

REQUIREMENTS

1. Provide an easily accessible dedicated area dedicated to the collection and storage of non-hazardous materials for recycling for the entire building. Materials must include at a minimum paper, corrugated cardboard, glass, plastics and metal. Provide space in, or adjacent to, this recycling area, for the storage of utility carts used for collecting trash and recyclables. Recycling, sorting and cart storage are not required at every floor. Equipment for storing and processing recyclables is provided by the SCA/F&E Unit based on a standard list of items per project type.

2. Size central recycling collection/storage area according to guidelines in the Design Requirement DR 1.3.1.8 Refuse and Recycling Storage, which are consistent with LEED for Schools 2009 space guidelines. Allow space for bailers and compactor in the Trash Room.

3. At the cafeteria, provide designated area(s) for bin(s) for recycling. Since the NYC Department of Sanitation sorts glass, plastic, metal, and milk and juice boxes off-site, only one type of recycling container needs to be provided at cafeterias. The amount of space for recycling containers is established by the Design Team based on criteria in DR 1.3.1.8.

 Provide wall-mounted sign holder(s) at cafeteria trash and recycling areas for the display of recycling instructional posters.

4. Within the kitchen area, provide space for two types of recycling containers to accommodate glass/plastic/metal and paper/cardboard.
SCA Standard Details, Standard Specifications and Design Requirements include recycling areas.

The SCA F&E Unit standard furniture equipment lists include: two-bin utility cart and recycling containers for classrooms, offices and cafeteria. Design Team should confirm that these items are included in appropriate quantities on the purchase list developed by the SCA/F&E Unit for the specific project.

Develop layout for central recycling area and food service area to ensure there is sufficient space for required recycling bins, and any equipment such as compactors and balers that may be required. Location of central recycling containers shall promote easy handling and removal of those materials.

A best practice guideline for the total of all recycling areas in the building is as follows:

<table>
<thead>
<tr>
<th>Recycling Area Guidelines</th>
</tr>
</thead>
<tbody>
<tr>
<td>School Area</td>
</tr>
<tr>
<td>0 to 5000 sf</td>
</tr>
<tr>
<td>5,001 to 15,000 sf</td>
</tr>
<tr>
<td>15,001 to 50,000 sf</td>
</tr>
<tr>
<td>50,001 to 100,000 sf</td>
</tr>
<tr>
<td>100,001 to 200,000 sf</td>
</tr>
<tr>
<td>200,001 sf or greater</td>
</tr>
</tbody>
</table>

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated in the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

• Incorporate credit requirements in specifications.
• On construction document plans, indicate areas for recycling, noting recycling area square footage(s) and number of containers assumed at cafeteria and food service areas.
• Incorporate requirements in construction documents.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

• Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

LEED for Schools 2009 MR Pr 1 Storage and Collection of Recyclables

SCA DESIGN REQUIREMENTS

DR 1.3.1.2 Building Organization - Space Relationships
DR 1.3.1.8 Refuse and Recycling Storage
DR 1.3.5.01 Cafeterias PK-8 and HS

SCA STANDARD SPECIFICATIONS

11172 Waste Handling Equipment

SCA STANDARD DETAILS

None

OTHER REFERENCES

NYC Department of Sanitation general web sites on recycling in schools:

NYC Department of Sanitation web site lists what to recycle in different areas of the school:
Extend the useful life of existing building structures, conserve material resources, retain cultural resources, reduce waste and the environmental impacts of school projects as they relate to materials manufacturing and transport.

This credit is required, if feasible, for all applicable projects.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Existing Structure Re-used (Const. Waste Diverted)</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.2</td>
<td>75%</td>
<td>1</td>
</tr>
<tr>
<td>M1.3</td>
<td>95%</td>
<td>1</td>
</tr>
</tbody>
</table>

Maintain the targeted percentage (based on surface area) of existing building structure (including structural floor and roof deck) and envelope (exterior skin and framing, excluding window assemblies and non-structural roofing material). If the project includes an addition to an existing building, this credit is not applicable when the square footage of the addition is more than two times the square footage of the existing building.

Hazardous materials that are remediated as part of the project scope, and elements requiring replacement due to unsound material condition, shall be excluded from the total for the purpose of calculating the percentage of building materials re-used.

Projects involving modernizations or renovations that do not comply with this credit may use the weight of re-used building materials in their calculations for Construction Waste Management credits M1.5R, M1.6 and M 1.7

See the LEED for Schools 2009 Reference Guide for detail including approach and implementation, calculations, considerations and resources.
This credit is only feasible for modernizations, renovations of leased spaces, and for additions fitting the size criteria outlined in the credit requirements.

The design should not be compromised to achieve this credit. This credit should only be pursued when there is no negative impact on design, including cost and program function.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative statement indicating if these credits are feasible or whether the portion of building elements to be reused is so low that their reuse should be used to contribute to credits M1.5R, M1.6 and M 1.7 instead.
- For projects that combine a renovation and an addition, submit calculations showing that the addition is less than two times the square footage of the existing building.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit draft Building Reuse Calculation Form.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- No credit submittal.

CONSTRUCTION

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit final Building Reuse Calculation Form (all modernization and renovation projects).

LEED for Schools 2009 MR Credit 1.1

Building Reuse – Maintain 75%/95% of Existing Walls, Floors and Roof

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

None

SCA STANDARD DETAILS

None

OTHER REFERENCES

None

BUILDING REUSE, MAINTAIN EXISTING WALLS, FLOORS & ROOF: CREDITS M1.2 & M1.3

97
Extend the useful life of existing building materials, conserve material resources, retain cultural resources, reduce waste and the environmental impacts of school projects as they relate to materials manufacturing and transport.

This credit is required, if feasible, for all applicable projects.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Existing Structure Re-used (Const. Waste Diverted)</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.4</td>
<td>50%</td>
<td>1</td>
</tr>
</tbody>
</table>

Reuse a minimum of 50% of pre-existing interior non-structural elements (interior walls, doors, floor coverings and ceiling systems).

This credit may be pursued independently of credits M1.2 and M1.3.

If the project includes an addition to an existing building, this credit is not applicable when the square footage of the addition is more than two times the square footage of the existing building.

When calculating surface areas of materials, count both sides of walls, but only one side of doors.

Hazardous materials that are remediated as part of the project scope, and elements requiring replacement due to unsound material condition, shall be excluded from the total for the purpose of calculating the percentage of building materials re-used.

Projects involving modernizations or renovations that do not comply with this credit may use the weight of re-used building materials in their calculations for Construction Waste Management credits M1.5R, M1.6 and M1.7.
This credit is only feasible for modernizations, renovations of leased spaces, and for additions fitting the size criteria outlined in the credit requirements.

The design should not be compromised to achieve this credit. This credit should only be pursued when there is no negative impact on design, including cost and program function.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative statement indicating if this credit is feasible, or whether the portion of building elements to be reused is so low that their reuse should be used to contribute to credits M1.5R, M1.6 and M 1.7 instead.
- For projects that combine a renovation and an addition, submit calculations showing that the addition is less than two times the square footage of the existing building.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit draft Building Reuse Calculation Form.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- No credit submittal.

CONSTRUCTION

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit final Building Reuse Calculation Form (all modernization and renovation projects).

REFERENCES

LEED for Schools 2009 Credit MR 1.2
Building Reuse – Maintain 50% of Interior Non-Structural Elements

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

None

SCA STANDARD DETAILS

None

OTHER REFERENCES

None
M1.5R, M1.6 & M1.7

CONSTRUCTION WASTE MANAGEMENT

INTENT

Divert recyclable and reusable construction and demolition debris from disposal in landfills and incineration facilities. Redirect recyclable recovered resources back to the manufacturing process. Redirect reusable materials to appropriate sites.

Credit M1.5R is required for all projects.

Credits M1.6 and M1.7 are required, if feasible, for all projects.

REQUIREMENTS

1. Recycle and/or salvage non-hazardous construction and demolition waste.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Const. Waste Diverted</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.5R</td>
<td>50%</td>
<td>1</td>
</tr>
<tr>
<td>M1.6</td>
<td>75%</td>
<td>1</td>
</tr>
<tr>
<td>M1.7</td>
<td>95%</td>
<td>1</td>
</tr>
</tbody>
</table>

2. The Contractor is to develop and implement a construction waste management plan that, at a minimum, identifies the materials to be diverted from disposal and whether the materials will be sorted on-site or commingled. Excavated soil and land-clearing debris does not contribute to this credit. Calculations can be done by weight or volume, but must be consistent throughout.

The SCA Standard Specifications include requirements for the Contractor to develop a construction waste management plan and to record the amount and type of construction waste diverted/recycled.

In NYC, construction waste for recycling is typically sorted off-site. Typical construction waste materials for recycling are wood, cardboard/paper packaging, masonry and steel.

Construction debris processed into a recycled content commodity which has an open market value – e.g. Wood Derived Fuel (WDF), alternative daily cover material, etc. – may be applied to the construction waste calculation.

Projects involving renovations that do not comply with building re-use credits M1.2 to M1.4 may use the weight of re-used building materials calculated on the Building Reuse Form toward credits M1.5R, M1.6 and M 1.7.

See LEED for Schools 2009 Reference Guide for detail including approach and implementation, calculations, considerations and resources.

The feasibility of credit M1.6 & M1.7 will be determined during construction based on construction waste documentation submitted by
Calculations for this credit are based on the amount of waste diverted from landfill or incineration compared with the total amount of waste generated on-site. Convert all materials to either weight or volume to calculate the percentage. Exclude excavated soil and land-clearing debris from calculations.

Projects that crush and reuse existing concrete, masonry, or asphalt on-site should include the weight or volume of these materials in the calculations. Any construction debris processed into a recycled content commodity that has an open-market value (e.g., alternative daily cover material) may be applied to the construction waste calculation.

Projects that use commingled recycling rather than on-site separation should obtain summaries of diversion rates from the recycler. Typically, the recycler should provide monthly reports.

DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative identifying applicable SCA standards to be incorporated. Indicate if building structure or non-structural items are anticipated to be re-used in quantities that would contribute to this credit as opposed to credits M1.2-M1.3 or M1.4.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Incorporate credit requirements in specifications.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

CONTRACTOR’S RESPONSIBILITY

Per the Project Specifications:

- Submit construction waste management plan.
- Submit waste reduction progress reports with each application for payment.
- Submit construction waste calculations and letter stating total waste material diverted and method of diversion.
- Complete construction waste matrix included in the specifications.

ARCHITECT’S RESPONSIBILITY

- For projects where portions of existing building elements will be revised in quantities that will comply with this credit, submit Building Reuse Calculation Form.

REFERENCES

- LEED for Schools 2009 MR Credit 2 Construction Waste Management
- SCA DESIGN REQUIREMENTS
 - None
- SCA STANDARD SPECIFICATIONS
 - S01524 Construction Waste Management
 - 02060 Building Demolition
 - 02070 Selective Removals & Demolition
- SCA STANDARD DETAILS
 - None
- OTHER REFERENCES
M2.1R, M2.2 RECYCLED CONTENT

INTENT

Increase demand for building products that incorporate recycled content materials, thereby reducing impacts resulting from the extraction and processing of virgin materials.

Credit M2.1R is required for all projects.

Credit M2.2 is required, if feasible, for all projects.

REQUIREMENTS

Use materials with recycled content such that the sum of post-consumer recycled content plus one-half of the pre-consumer recycled content constitutes at least 10% (based on cost) of the total value of the materials in the project.

The recycled content value of a material assembly shall be determined by weight. The recycled fraction of the assembly is then multiplied by the cost of assembly to determine the recycled content value. Recycled contents shall be defined in accordance with the International Organization for Standardization document, ISO 14021 – Environmental labels and declaration – Self-declared environmental claims (Type II environmental labeling).

The following materials are not required to be included in calculations for this credit: mechanical, electrical and plumbing components, elevators and furniture, fixtures and equipment.

Pre-consumer material is defined as material diverted from the waste stream during the manufacturing process. Excluded is reutilization of materials such as rework, regrind or scrap generated in a process and capable of being reclaimed within the same process that generated it.

Per the methodology for this credit in the current version of LEED, the typical value of materials on the project can be assumed to be 45% of the cost of Divisions 2-10. SCA projects should use this assumption as opposed to totaling materials use for each item. In New York City, where labor rates are high, this is a conservative assumption.

Items recycled on-site (e.g., pavement ground on-site and reused as fill) count toward M1.5R and M1.6 Construction Waste Management Credits – not toward this credit.

Achieving a level of 20% recycled content will result in an additional point.

Breakdown of Approximate Percentage of Recycled Material for Typical School to Achieve 10% Recycled Content

<table>
<thead>
<tr>
<th>Material</th>
<th>Min. %</th>
<th>Post-Cons. Content</th>
<th>Pre-Cons. Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Unit Masonry</td>
<td>6%</td>
<td></td>
<td>94%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Unit Masonry</td>
<td>6%</td>
<td></td>
<td>94%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Gypsum Board</td>
<td>7%</td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Ceiling Tile</td>
<td>5%</td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Other Metals</td>
<td>22%</td>
<td></td>
<td>78%</td>
</tr>
<tr>
<td>Structural Steel</td>
<td>45%</td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>Concrete</td>
<td>11%</td>
<td></td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit</th>
<th>Recycled Content</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.1R</td>
<td>10%</td>
<td>1</td>
</tr>
<tr>
<td>M2.2</td>
<td>20%</td>
<td>1</td>
</tr>
</tbody>
</table>
SCA specification sections include minimum recycled content limits for major project components. The recycled content percentages have been selected to achieve this credit’s requirement in the full range of school projects and are typical of those products.

Review of final calculation results from completed school projects will allow for future refinement of products and percentages.

Summary of Materials Specified with Recycled Content

<table>
<thead>
<tr>
<th>Material</th>
<th>Min. % Post-Cons. Content</th>
<th>Min. % Pre-Cons. Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recycled Concrete Aggregate</td>
<td>Ask to report</td>
<td></td>
</tr>
<tr>
<td>Asphalt Pavement</td>
<td>Ask to report</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>6% Combined</td>
<td></td>
</tr>
<tr>
<td>Concrete Masonry Unit</td>
<td>3% Combined</td>
<td></td>
</tr>
<tr>
<td>Brick</td>
<td>Ask to report</td>
<td></td>
</tr>
<tr>
<td>Structural Steel</td>
<td>30% 15%</td>
<td></td>
</tr>
<tr>
<td>Non-Structural Steel</td>
<td>25% 0%</td>
<td></td>
</tr>
<tr>
<td>Batt Insulation</td>
<td>0% 20%</td>
<td></td>
</tr>
<tr>
<td>Rigid Insulation</td>
<td>7% Combined</td>
<td></td>
</tr>
<tr>
<td>Sprayed Fire Resistant Materials</td>
<td>5% Combined</td>
<td></td>
</tr>
<tr>
<td>Roofing Membrane</td>
<td>7% 0%</td>
<td></td>
</tr>
<tr>
<td>Aluminum Projected Windows</td>
<td>Ask to report</td>
<td></td>
</tr>
<tr>
<td>GWB</td>
<td>5% 90%</td>
<td></td>
</tr>
<tr>
<td>Abuse Resistant GWB</td>
<td>0% 0%</td>
<td></td>
</tr>
<tr>
<td>Fire Rated GWB</td>
<td>0% 0%</td>
<td></td>
</tr>
<tr>
<td>GB/Tile Backer Board</td>
<td>5% 0%</td>
<td></td>
</tr>
<tr>
<td>Ceramic Wall Tile</td>
<td>0% 4%</td>
<td></td>
</tr>
<tr>
<td>Ceramic Floor Tile</td>
<td>0% 40%</td>
<td></td>
</tr>
<tr>
<td>Ceramic Quarry Tile</td>
<td>0% 8%</td>
<td></td>
</tr>
<tr>
<td>Acoustic Ceiling Tile</td>
<td>0% 60%</td>
<td></td>
</tr>
<tr>
<td>VCT</td>
<td>0% 1%</td>
<td></td>
</tr>
<tr>
<td>Vinyl Sheet Flooring</td>
<td>0% 1%</td>
<td></td>
</tr>
</tbody>
</table>

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Incorporate credit requirements in construction documents. Indicate any products beyond those in the Standard Specifications where recycled content is to be reported.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

CONTRACTOR’S RESPONSIBILITY

Per the Project Specifications:

- Submit Contractor’s Sustainable Materials Forms with information on recycled content.
- Submit construction cost figure for CSI divisions 2-10.

ARCHITECT’S RESPONSIBILITY

- Review Contractor’s submittals for verification of recycled content levels.
- Submit Recycled Content Summary Form based on Contractor’s Sustainable Materials Forms and construction cost figure.
- Submit Certification Form with completed information for this credit.

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

02200 Earthwork
02511 Asphaltic Concrete Paving
02513 Sidewalk and Street Paving
03300 Cast-in-Place Concrete
04200 Unit Masonry
05120 Structural Steel
05210 Open Web Steel Joist, K-Series
05220 Longspan Steel Joists. LH Series
05230 Steel Joist Girders
05710 Steel Stairs
07211 Perimeter Foundation Insulation
07212 Miscellaneous Building Insulation
07250 Sprayed Fire-Resistive Materials
07560 Fluid-applied Protected Membrane Roofing
08524 Aluminum Projected Windows
09260 Gypsum Board Assemblies
09310 Ceramic Tile
09510 Acoustic Ceilings
09626 Resilient Athletic Flooring
09650 Resilient Flooring
09680 Carpet
10151 Toilet Compartments
10185 Shower and Dressing Compartments

SCA STANDARD DETAILS

None

OTHER REFERENCES

None
REGIONAL MATERIALS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase demand for building materials and products that are extracted and manufactured within the region, thereby supporting the use of indigenous resources and reducing the environmental impacts resulting from transportation.</td>
<td>Use building materials or products that have been extracted, harvested or recovered, as well as manufactured, within 500 miles of the project site for a minimum of 10% (based on cost) of the total material value. If only a fraction of a product or material is extracted/harvested/recovered and manufactured locally, then only that percentage (calculate cost contribution by percentage of weight) shall contribute to the regional value.</td>
</tr>
<tr>
<td>These credit must be reported on all projects.</td>
<td>Per the methodology of this credit in the current version of LEED, the typical value of materials on the project can be assumed to be 45% of the cost of Divisions 2-10. SCA projects should use this assumption as opposed to totaling materials use for each item. In New York City, where labor rates are high, this is a conservative assumption.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit</th>
<th>Regional Materials</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.3</td>
<td>10%</td>
<td>1</td>
</tr>
<tr>
<td>M2.4</td>
<td>20%</td>
<td>1</td>
</tr>
</tbody>
</table>

The following materials are not required to have regional content for compliance with this credit: mechanical, electrical and plumbing components and specialty items such as elevators and furniture fixtures and equipment.
To be consistent with city and state requirements, the SCA specifications do not mandate regional content for materials. Design teams may not add requirements to the specifications that materials be extracted, processed and manufactured regionally.

The SCA specifications, without mandating regional content, require documentation of any regional content for a select group of materials which are available regionally. It is anticipated that typical projects will meet this credit’s requirements by obtaining the specified information on these materials.

Review of final calculation results from completed school projects will allow for future refinement of products.

Summary of Materials for Which Regional Content Documentation Requested

<table>
<thead>
<tr>
<th>Section Number</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>02200</td>
<td>Fill & Backfill Materials</td>
</tr>
<tr>
<td>02511, 02513</td>
<td>Asphalt Pavement</td>
</tr>
<tr>
<td>02900</td>
<td>Landscaping Materials</td>
</tr>
<tr>
<td>02513, 03300</td>
<td>Concrete</td>
</tr>
<tr>
<td>04200</td>
<td>Concrete Masonry Units</td>
</tr>
<tr>
<td>04200</td>
<td>Brick</td>
</tr>
<tr>
<td>Division 5</td>
<td>Structural Steel, Steel Joists</td>
</tr>
<tr>
<td>05300</td>
<td>Metal Deck</td>
</tr>
<tr>
<td>09260</td>
<td>Gypsum Wallboard</td>
</tr>
<tr>
<td>09260</td>
<td>Tile Backer Board</td>
</tr>
<tr>
<td>09310</td>
<td>Ceramic Tile</td>
</tr>
</tbody>
</table>

Design Development

Architect’s Responsibility

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% Construction Documents

Architect’s Responsibility

- Incorporate requirements in specifications.

100% Construction Documents

No credit submittal.

Construction

Contractor’s Responsibility

Per the Project Specifications:

- Submit Contractor’s Sustainable Materials Forms with information on regional content.
- Submit construction cost figure for CSI divisions 2-10.

Architect’s Responsibility

- Review Contractor’s submittals for verification of regional content levels.
- Submit Regional Content Summary Form based on Contractor’s Sustainable Materials Forms and construction cost figure.
- Submit Certification Form with completed information for this credit.

LEED for Schools 2009 MR Credit 5 Regional Materials

SCA Design Requirements

None

SCA Standard Specifications

- 02200 Earthwork
- 02511 Asphaltic Concrete Paving
- 02513 Sidewalk and Street Paving
- 02900 Landscaping
- 03300 Cast-in-Place Concrete
- 04200 Unit Masonry
- 05120 Structural Steel
- 05210 Open Web Steel Joist, K-Series
- 05220 Longspan Steel Joists, LH-Series
- 05230 Steel Joist Girders
- 05300 Metal Deck
- 09260 Gypsum Board Assemblies
- 09310 Ceramic Tile

SCA Standard Details

None

Other References

None
M2.5R WALLBOARD & ROOF DECK PRODUCTS, MOLD RESISTANCE

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
</table>
| To incorporate mold resistant materials at the building envelope, including wallboard and roof deck products. | Select materials for exterior envelope construction that are resistant to mold. Incorporate mold resistance standards in specifications for applicable materials at the building envelope. | The SCA standards and specifications call for materials at the building envelope that contains little or no organic material. The standard for exterior wall construction is brick and block cavity wall. The standard for roof deck is concrete on metal deck.

The Standard Specifications include requirements for compliance with mold resistant standards for wallboard, spray fireproofing and building insulation. The standards referenced in the specification are included for reference in the “Other References” section on the facing page.

SCA standard details have been developed to address the critical element in mold resistance: water penetration. |
DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
• Incorporate credit requirements in specifications.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

NY-CHPS Version 1.0 Credit 4.1.1
Wallboard & Roof Deck Products

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
06100 Rough Carpentry
07212 Miscellaneous Building Insulation
07250 Sprayed Fire-Resistive Materials
09260 Gypsum Board Assemblies

SCA STANDARD DETAILS
None

OTHER REFERENCES
ASTM G21-02 Standard Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi

ASTM D4300-01 Standard Test Methods for Ability of Adhesive Films to Support or Resist the Growth of Fungi

ASTM C1338-00 Standard Test Method for Determining Fungi Resistance of Insulation Materials and Facings
<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescent and HID lamps contain mercury. When broken, incinerated or buried in a landfill, they release mercury into the air, water and soil and endanger human health and the environment. Low-mercury, or “green end cap,” lamps do not eliminate the hazardous waste stream but do reduce it considerably.</td>
<td>Specify low-mercury fluorescent lamps for all new fluorescent light fixtures.</td>
<td>The SCA Standard Specifications include this requirement for light fixtures. Any additional non-standard fluorescent fixtures approved for incorporation in the project by the SCA must also comply.</td>
</tr>
</tbody>
</table>
LOW-MERCURY LIGHTING, REDUCE MERCURY WASTE: CREDIT M2.6R

CREDIT SUBMITTALS

DESIGN DEVELOPMENT

ELECTRICAL ENGINEER’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

- Incorporate credit requirements in specifications.

100% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

- Update specifications as required for low-mercury fluorescent fixtures of non-standard SCA fixtures.
- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

CONSTRUCTION

No Credit Submittal.

REFERENCES

NY-CHPS Version 1.0 Credit 7.2.3
Purchase Low-Mercury Lighting Reduce Mercury Waste

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

16501 Lamps, Ballasts and Accessories

SCA STANDARD DETAILS

None

OTHER REFERENCES

None
Because of the high rates of asthma among NYC school children and current concerns about the health of students and staff, the SCA has expanded and placed great emphasis on this section of the NYC Green Schools Guide. Over one third of the credits in the guide are devoted to indoor environmental quality.

The credits in this section improve indoor environmental quality during construction and after occupancy by requiring a higher standard of performance relating to:

- Construction practices
- Operational and maintenance practices
- Selection of low-emitting materials
- Improved ventilation
- Air-flow monitoring and verification
- Managing air contaminants

IEQ improvements are provided throughout the school and include:

- Natural daylighting and views, with glare control measures
- Direct-Indirect artificial lighting and controls
- Improved acoustic performance
- Thermal comfort control
- Improved air filtration
- Reduced levels of indoor air contaminants

Together, these measure will provide a healthy, comfortable indoor environmental for NYC public schools.
Minimum IAQ Performance & Increased Ventilation

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish minimum indoor air quality (IAQ) performance to enhance indoor environment in buildings, thus contributing to the comfort and well-being of the occupants.</td>
<td>1. Meet the minimum requirements of Sections 4 through 7 of ASHRAE 62.1-2007 Ventilation for Acceptable Indoor Air Quality (with errata but without addenda). Increase breathing zone outdoor air ventilation rates to all occupied spaces (except for cafeteria and multipurpose rooms with kitchens) by at least 30% above the minimum rates required by ASHRAE Standard 62.1-2007 (with errata but without addenda)</td>
<td>The SCA Design Requirements, specifications, and details are consistent with compliance with this credit.</td>
</tr>
<tr>
<td>Furthermore, provide additional outdoor air ventilation to improve indoor air quality for improved occupant comfort, well-being and productivity.</td>
<td>2. The mechanical system shall be designed using whichever ventilation rates are larger: the NYC DOB Code ventilation rates or 30% above the ASHRAE Standard 62.1-2007 (refer to Q1.4) breathing zone outdoor ventilation rates. The exceptions are cafeterias and multipurpose rooms served by rooftop units that also serve an associated kitchen. The mechanical systems for these cafeterias and multipurpose rooms shall be designed using whichever ventilation rate is larger: NYC DOB Code ventilation rates or ASHRAE Standard 62.1-2007 breathing zone outdoor ventilation rates, without the 30% increase.</td>
<td>Section 4 of ASHRAE 62.1-2007 addresses analysis of outdoor air quality. The SCA/IEH Unit conducts site investigation and research consistent with this section. This information is provided to the Design Team.</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>The auditorium and gymnasium spaces shall achieve the 30% increase as stipulated above and shall use CO2 controls to modulate breathing zone rates.</td>
<td>The MERV 13 filters specified for fresh air intake are sufficient to accommodate any instances where New York City counties are non-attainment area for particulate matter (PM10).</td>
</tr>
<tr>
<td></td>
<td>Mechanical ventilation, as opposed to natural ventilation, is the SCA standard because it facilitates control of indoor thermal conditions.</td>
<td>When the IEH Unit investigation indicates the county that the project is located in is a non-attainment area for ozone, special filters will be required.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compliance with the other three referenced sections of ASHRAE 62.1-2007 do not involve input from SCA/IEH. The content of those sections is summarized below.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 5. Systems and Equipment — requirements for: outdoor air intake and exhaust, filtration, dehumidification, and recirculation of air and relative humidity.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 6 Procedures – For Mechanically Ventilated Spaces, calculations pertaining to the ventilation rate procedure (VRP) methodology found in Section 6.2 of ASHRAE 62.1-2007 shall be used.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Section 7 Construction and Systems Start-up – protection, construction, start-up, field testing and balancing.</td>
</tr>
</tbody>
</table>
SCHEMATIC DESIGN

No credit submittal.

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
- Submit IEH outdoor air analysis report.
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents. Describe the proposed ventilation system design and note any special considerations relating to compliance.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Comply with SCA Design Requirements.
- Edit SCA Standard Specifications.
- Incorporate credit requirements in construction documents. Submit ventilation calculations verifying compliance with Table 6-1 of ASHRAE 62.1-2007 entitled, “Minimum Ventilation Rates in Breathing Zone”, increased by 30% (with the exception of the cafeterias and multi-purpose rooms).
- Submit updated documentation as necessary through out to 100%.

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION

CONTRACTOR’S RESPONSIBILITY
Per the Project Specifications:
- Provide air balancing reports.

COMMISSIONING AGENT’S RESPONSIBILITY
- Verify outside air quantities.

REFERENCES

LEED for Schools 2009 IEQ Pr 1
Minimum IAQ Performance

LEED for Schools 2009 IEQ Credit 2
Increased Ventilation

ASHRAE 62.1-2007-Ventilation for Acceptable Indoor Air Quality

SCA DESIGN REQUIREMENTS

6.2.0 General Overview of Heating Ventilation and Air Conditioning Systems
6.2.1 HVAC Unit Centralization and Coordination
6.2.3 Non-Assembly Spaces (Classrooms, Offices, etc.)
6.2.4 Public Assembly Spaces
6.2.9 Heating and Cooling Design Parameters (Load Calculations)

SCA STANDARD SPECIFICATIONS

S01550 Indoor Air Quality Requirements
15781 Packaged Heating and Cooling Units
15852 Air Handling Units
15853 Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)
15854 Custom Packaged Rooftop Heating and Cooling Units (Constant Volume System)
15855 Commercial Packaged Rooftop Heating and Cooling Units
15985 Sequence of Operations
15992 Cleaning and Testing
15993 Balancing of Systems

SCA STANDARD DETAILS

None

OTHER REFERENCES

The US Environmental Protection Agency:
www.epa.gov/iaq

Information on New York City Region outdoor air quality:

Indoor Air Quality in Large Buildings:
http://www.epa.gov/iaq/largebldgs/index.html

Building Assessment Survey and Evaluation (BASE) Study:
http://www.epa.gov/iaq/base/index.html
Q1.2r Outdoor Air Delivery Monitoring

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide capacity for ventilation system monitoring to help sustain occupant comfort and well-being. This credit is required for all projects.</td>
<td>Install permanent monitoring systems that provide feedback on ventilation system performance to ensure that ventilation systems maintain design minimum ventilation requirements. Configure all monitoring equipment to generate an alarm when the conditions (either airflow value or CO₂ level) vary by 10% or more from the value expected at design conditions, via the building automation system alarm to the building operator.</td>
<td>SCA Design Requirements and Standard Specifications include air flow stations and monitoring requirements. Air flow stations shall be provided at all outside air intake air systems of central air distribution systems.</td>
</tr>
</tbody>
</table>

FOR MECHANICALLY VENTILATED SPACES
- Monitor carbon dioxide concentrations within all public assembly spaces. For densely occupied non-assembly spaces (those with a design occupant density greater than or equal to 25 people per 1000 sq.ft.) served by a common Central Variable Air Volume System, monitor total outside ventilation airflow. Monitor for carbon dioxide concentrations for all densely occupied non-assembly spaces provided with a decoupled or dedicated ventilation systems. CO₂ monitoring locations shall be between 3 feet and 6 feet above the floor.
- Provide a direct outdoor airflow measurement device capable of measuring the minimum outdoor air intake flow with an accuracy of plus or minus 15% of the design minimum outdoor air rate, as defined by ASHRAE 62.1-2007 (with errata but without addenda) for mechanical ventilation systems where 20% or more of the design supply airflow serves non-densely occupied spaces.

DESIGN
- SCA Design Requirements and Standard Specifications include air flow stations and monitoring requirements.

POST-OCCUPANCY
- Air flow stations shall be calibrated on a yearly basis by DOE/DSF staff or as indicated by manufacturer recommendations.
- Information shall be kept three years from the date of collection and shall be made available to the public upon request.

Provide air flow stations on all outdoor air intakes of central ventilating and air-conditioning equipment. These systems must include data accumulation and be downloadable for printout. Data to be accumulated on cubic feet per minute basis once a day during school operation.
DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents. Describe air flow stations and monitoring system and note any special considerations relating to compliance.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Incorporate credit requirements in construction documents.
- Submit updated documentation as necessary through to 100%

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION

COMMISSIONING AGENT’S RESPONSIBILITY
- Verify operation of flow measuring stations.

REFERENCES

| LEED for Schools 2009 IEQ Credit 1 | Outdoor Air Delivery Monitoring |
| NY-CHPS Version 1.0 Credit 5.4.8 | Air Flow Stations on Outside Air Intakes |

SCA DESIGN REQUIREMENTS

6.2.0 General Overview of Heating Ventilation and Air Conditioning Systems
6.2.1 HVAC Unit Centralization and Coordination
6.2.3 Non-Assembly Spaces (Classrooms, Offices, etc.)
6.2.4 Public Assembly Spaces
6.2.9 Heating and Cooling Design Parameters (Load Calculations)

SCA STANDARD SPECIFICATIONS

15970 Temperature Control System (LonWorks BMS/DDC With School Operating Console)
15985 Sequence of Operations

SCA STANDARD DETAILS

15985 HVAC Standard Detail Series

OTHER REFERENCES

None
Q2.1R

CONSTRUCTION IAQ MANAGEMENT PLAN, DURING CONSTRUCTION

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce indoor air quality problems resulting from the construction process in order to help sustain the comfort and well-being of construction workers and building occupants.</td>
<td>Per the Project Specifications the Contractor is to:</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>1. Develop and implement an Indoor Air Quality (IAQ) Management Plan for the construction and pre-occupancy phases of the building as follows:</td>
</tr>
<tr>
<td></td>
<td>• During construction, meet or exceed the recommended Control Measures of the Sheet Metal and Air Conditioning Contractors National Association (SMACNA) IAQ Guidelines For Occupied Buildings Under Construction, 2nd Edition 2007, ANSI/SMACNA 008-2008 (Chapter 3).</td>
</tr>
<tr>
<td></td>
<td>• Protect absorptive materials that are either stored on-site or installed from moisture damage.</td>
</tr>
<tr>
<td></td>
<td>• If permanently installed air handlers are used during construction, filtration media with a Minimum Efficiency Reporting Value (MERV) 8 shall be used at each return air inlet (i.e., grilles, registers, openings in ductwork where ceilings are used as return air plenums) as determined by ASHRAE 52.2-1999.</td>
</tr>
<tr>
<td></td>
<td>• Replace all permanently required filtration media immediately prior to occupancy.</td>
</tr>
<tr>
<td></td>
<td>• Prohibit smoking inside the building and within 25’ of building entrances.</td>
</tr>
<tr>
<td></td>
<td>2. Mechanically exhaust materials that emit Volatile Organic Compounds (VOCs) or urea formaldehyde during installation. Continue ventilation of those materials after installation for at least 72 hours or until emissions dissipate.</td>
</tr>
<tr>
<td></td>
<td>It is reasonable to exempt from these requirements, materials that comply with low emissions criteria in credits Q3.1R-Q3.4R.</td>
</tr>
<tr>
<td></td>
<td>3. Use high-efficiency particulate arrestor (HEPA) vacuum on carpeted and soft surfaces prior to substantial completion. For phased, occupied renovations, HEPA vacuum any carpet daily in occupied areas.</td>
</tr>
<tr>
<td></td>
<td>4. During construction or renovation, meet or exceed the following minimum requirements:</td>
</tr>
<tr>
<td></td>
<td>• Building materials, such as wood, porous insulation, paper and fabric, shall be kept dry to prevent the growth of mold and bacteria.</td>
</tr>
<tr>
<td></td>
<td>• Schedule deliveries so that materials that are susceptible to mold growth are installed after the construction area is watertight.</td>
</tr>
<tr>
<td></td>
<td>• During construction, cover these materials to prevent rain damage, and if resting on the ground, use spacers to allow air to circulate between the ground and the materials. Provide site drainage as needed.</td>
</tr>
<tr>
<td></td>
<td>• Water-damaged materials shall begin to be dried within 24 hours. Due to the possibility of mold and bacterial growth, materials that are damp or wet for more than 48 hours may need to be discarded as determined by the SCA.</td>
</tr>
<tr>
<td></td>
<td>• Immediately remove materials showing signs of mold and mildew, including any with moisture stains, from the site and properly dispose of them. Replace moldy materials with new, undamaged materials.</td>
</tr>
<tr>
<td></td>
<td>5. If it is not possible to install high VOC-emitting products before porous and fibrous materials (such as carpet) are installed, protect porous materials with polyethylene vapor retarders. Install carpet after spaces have been painted.</td>
</tr>
</tbody>
</table>
The SCA specification Section S01550, Indoor Air Quality Requirements, requires development and implementation of an IAQ plan consistent with this credit’s requirements.

Section S01560 Installation Sequence of Finish Materials, requires the Contractor to sequence the installation of materials to avoid contamination of absorptive materials, such as insulation, carpeting, ceiling tile and gypsum wallboard.

DESIGN DEVELOPMENT

ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ENGINEER’S RESPONSIBILITY
- Include appropriate specification sections with submittal. Review any project specific modifications with SCA Design Manager.

100% CONSTRUCTION DOCUMENTS

ENGINEER’S RESPONSIBILITY
- No credit submittal.

CONSTRUCTION

CONTRACTOR’S RESPONSIBILITY
- Per the Project Specifications:
 - Submit project specific IAQ Management Plan and digital photos of six SMACNA IAQ measures taken during construction.
 - Submit completed Contractor’s Certification Form.

REFERENCES

- LEED for Schools 2009 IEQ Credit 3.1 Construction IAQ Management Plan, During Construction
- NY-CHPS Version 1.0 Credit 5.4.1 IAQ During Construction
- NY-CHPS Version 1.0 Credit 5.4.2 Mold Protection

SCA DESIGN REQUIREMENTS
- None

SCA STANDARD SPECIFICATIONS
- S01550 Indoor Air Quality Requirements
- S01560 Installation Sequence of Finish Materials

SCA STANDARD DETAILS
- None

OTHER REFERENCES

- ASHRAE 52.2-1999; Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size.
CONSTRUCTION IAQ MANAGEMENT PLAN, BEFORE OCCUPANCY

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce indoor air quality problems resulting from the construction process in order to help sustain the comfort and well-being of building occupants.</td>
<td>LEED describes several alternate methods of flushing out the building at the completion of construction. After construction ends, but prior to occupancy and with all interior finishes installed, install new filtration media and perform a building full flush-out. Supply the total air volume of 14,000 cubic foot of outdoor air per square foot of floor area prior to occupancy maintaining an internal temperature at least 60°F dry bulb and relative humidity no higher than 60%. If there is not enough time for full flush-out in the construction schedule, the space may be occupied following delivery of a minimum of 3,500 cubic foot of outdoor air per square foot of floor area to the space. Once the school is occupied, it shall be ventilated at a rate of 0.30 cubic feet per minute per square foot of outside air or the design minimum outside air rate, whichever is greatest. During each day of the flush-out period, ventilation shall begin a minimum of three hours prior to occupancy and continue during occupancy and shall continue until a total of 14,000 cubic foot of outside air per square foot of floor area has been delivered to the space.</td>
<td>The SCA specifications include Section S01550, Indoor Air Quality Requirements. For a typical IS/HS, the full 14,000 cubic feet of outdoor air during full flush-out prior to occupancy was calculated to take over three weeks, whereas the 3,500 cubic feet of outdoor air for flush-out was estimated to take approximately a third of that time. The Commissioning agent shall verify that the IAQ Management Plan proposed by the Contractor is acceptable. The Commissioning agent shall also verify that the actual procedures used to accomplish this credit have been met, including direct verification by visual inspection of the CFM values on the BMS workstation. The quantity of outside air delivered shall be verified through the BMS and shall include, in the aggregate, the total of all outside air flows as measured by the outside air flow stations.</td>
</tr>
</tbody>
</table>

The quantity of outside air delivered shall be verified through the BMS and shall include, in the aggregate, the total of all outside air flows as measured by the outside air flow stations.
Q119 construction IAQ management plan, before occupancy: credit Q2.2r

LEED for Schools 2009 IEQ Credit 3.2
Construction IAQ Management Plan, Before Occupancy

NY-CHPS Version 1.0 Credit 5.4.7 and 5.4.8
SMACNA - IAQ

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
S01550 Indoor Air Quality Requirements

SCA STANDARD DETAILS
None

OTHER REFERENCES
Indoor Air Quality – design tools for schools:
http://www.epa.gov/iaq/schooldesign/controlling.html
Air Quality Sciences Resource Center:
http://www.aerias.org
Sheet Metal and Air Conditioning Contractors’ National Association:
www.smacna.org

DESIGN DEVELOPMENT
ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS
ENGINEER’S RESPONSIBILITY
- Incorporate credit requirements for IAQ Management Plan in the construction documents.

100% CONSTRUCTION DOCUMENTS
ENGINEER’S RESPONSIBILITY
No credit submittal

CONSTRUCTION
CONTRACTOR’S RESPONSIBILITY
Per the Project Specifications:
- Submit Contractor Certification Form.
- Submit a narrative describing the project’s specific flush-out method procedures.
- Indicate flush-out period on the construction schedule.
- Submit calculations to determine the total volume of outside air required to comply with the flush-out requirement, and the required amount of time to deliver this amount of air (at a minimum position of the designed air flow rate per HVAC unit).

REFERENCES

CONSTRUCTION IAQ MANAGEMENT PLAN, BEFORE OCCUPANCY: CREDIT Q2.2r

119
Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well being of installers and occupants.

This credit is required for all projects.

All adhesives and sealants used on the interior of the building (defined as inside of the weatherproofing system and applied on-site) shall comply with the requirements of the following reference standards:

Adhesives, Sealants and Sealant Primers: South Coast Air Quality Management District (SCAQMD) Rule #1168. VOC limits are listed in the table below and correspond to an effective date of July 1, 2005, and rule amendment date of January 7, 2005.

SCAQMD VOC Limits - 1/7/05

<table>
<thead>
<tr>
<th>Specialty Applications</th>
<th>VOC Limit (g/L less water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC Welding</td>
<td>510</td>
</tr>
<tr>
<td>CPVC Welding</td>
<td>490</td>
</tr>
<tr>
<td>ABS Welding</td>
<td>325</td>
</tr>
<tr>
<td>Plastic Cement Welding</td>
<td>250</td>
</tr>
<tr>
<td>Adhesive Primer for Plastic</td>
<td>550</td>
</tr>
<tr>
<td>Contact Adhesive</td>
<td>80</td>
</tr>
<tr>
<td>Special Purpose Adhesive</td>
<td>250</td>
</tr>
<tr>
<td>Structural Wood Member Adhesive</td>
<td>140</td>
</tr>
<tr>
<td>Sheet Applied Rubber Lining Operations</td>
<td>850</td>
</tr>
<tr>
<td>Top & Trim Adhesive</td>
<td>250</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sealant Applications</th>
<th>VOC Limit (g/L less water)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>250</td>
</tr>
<tr>
<td>Architectural Non Porous</td>
<td>250</td>
</tr>
<tr>
<td>Architectural Porous</td>
<td>775</td>
</tr>
<tr>
<td>Nonmembrane Roof</td>
<td>300</td>
</tr>
<tr>
<td>Roadway</td>
<td>250</td>
</tr>
<tr>
<td>Single-Ply Roof Membrane</td>
<td>450</td>
</tr>
<tr>
<td>Other</td>
<td>420</td>
</tr>
</tbody>
</table>

OR

All adhesive & sealants to meet the testing and product requirements of the California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1.
The SCA Standard Specifications specify low-emitting adhesives and sealants and require Contractors to submit documentation of VOC content.

The limits listed below are included in specification section G01600, Material and Equipment. These limits are equal to or more stringent than current New York State VOC limits.

Any adhesives and sealants added to a specific project's specifications must meet these low VOC requirements including products in MEP, structural and architectural sections.

Design teams must review Contractor's construction submittals and include VOC information on the Low-Emitting Material - Summary Form.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Incorporate credit requirements in construction documents.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

ARCHITECT’S RESPONSIBILITY

- Submit Low-Emitting Materials - Summary Form based on documentation submitted by Contractor.
- Submit Certification Form with completed information for this credit.

LEED for Schools 2009 IEQ Credit 4.1
Low-Emitting Materials, Adhesives and Sealants

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS

References throughout specifications G01600 Material and Equipment
07900 Joint Sealers
09680 Carpet
15401 Supplemental General Requirements
15440 Plumbing Fixtures

SCA STANDARD DETAILS
None

OTHER REFERENCES

California Department of Public Health
http://www.cal-iaq.org/vocs/standard-method-for-voc-emissions-testing-and-evaluation

Green Seal Standards and Certification for Commercial Adhesives:
http://www.greenseal.org/certification/standards/commercial_adhesives_GS_36.cfm

NYS Department of Environmental Conservation VOC limits for architectural coatings:
http://www.dec.ny.gov/regs/4279.html
INTENT

Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

This credit is required for all projects.

REQUIREMENTS

Paints and coatings used on the interior of building (defined as inside of the weatherproofing system and applied on-site) shall comply with the following criteria:

Interior Paints and Coating Standards Summary

<table>
<thead>
<tr>
<th>Paints and Coatings</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Paints, Coatings and Primers applied to Interior Walls and Ceilings</td>
<td>GS-11</td>
</tr>
<tr>
<td>Green Seal Standard Paints, 1st Edition, 5/20/1993</td>
<td>Anti-Corrosive and Anti-Rust Paints applied to Interior Ferrous Metal Substrates</td>
</tr>
<tr>
<td>Anti-Corrosive Paints</td>
<td>GS-03</td>
</tr>
<tr>
<td>2nd Edition, 1/7/1997</td>
<td></td>
</tr>
<tr>
<td>Clear Wood Finishes, Floor Coating, Stains, Sealers and Shellacs applied to Interior Elements</td>
<td>SCAQMD Rule 1113</td>
</tr>
<tr>
<td>South Coast Air Quality Management</td>
<td>District, Architectural Coatings</td>
</tr>
<tr>
<td>1/1/2004</td>
<td></td>
</tr>
</tbody>
</table>

OR

All paints and coatings to meet the testing and product requirements of the California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1.
The SCA Standard Specifications specify low-emitting paints and coatings and require Contractors to submit documentation of VOC content. The limits in the adjacent chart are included in specification section G01600, Material and Equipment. These limits are equal to or more stringent than current New York State VOC limits.

Any paints and coatings added to a specific project’s specifications must meet these low VOC requirements including products in MEP, structural and architectural sections.

Design teams must review Contractor’s construction submittals and include VOC information on the Low-Emitting Material - Summary Form.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
- Incorporate credit requirements in construction documents.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

ARCHITECT’S RESPONSIBILITY
- Submit Low-Emitting Materials - Summary Form based on documentation submitted by Contractor.
- Submit Certification Form with completed information for this credit.

REFERENCES

- LEED for Schools 2009 IEQ Credit 4.2
- Low-Emitting Materials, Paints and Coatings
- SCA DESIGN REQUIREMENTS
- None
- SCA STANDARD SPECIFICATIONS
- References throughout specifications G01600 Material and Equipment
- 09900 Painting
- SCA STANDARD DETAILS
- None
- OTHER REFERENCES
- Green Seal Standards and Certification for Paints:
 http://www.greenseal.org/certification/standards/gs11paintscoatings.cfm
- California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1
 http://www.cal-iaq.org/vocs/standard-method-for-voc-emissions-testing-and-evaluation
- NYS Department of Environmental Conservation VOC limits for architectural coatings:
 http://www.dec.ny.gov/regs/4279.html
Q3.3R

LOW-EMITTING MATERIALS, FLOORING SYSTEMS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.</td>
<td>All flooring must comply with the following as applicable to the project scope.</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>All carpet installed in the building interior shall meet the testing and product requirements of the Carpet and Rug Institute’s Green Label Plus program.</td>
</tr>
<tr>
<td></td>
<td>All carpet cushion installed in the building interior shall meet the requirements of the Carpet and Rug Institute’s Green Label program.</td>
</tr>
<tr>
<td></td>
<td>All carpet adhesive shall meet the requirements of Q3.1 VOC limit of 50g/L.</td>
</tr>
<tr>
<td></td>
<td>Concrete, wood, bamboo, and cork floor finishes such as sealer, stain and finish must meet the requirements of South Coast Air Quality Management District (SCAQMD) Rule #1113, Architectural Coatings, rules in effect on January 1, 2004.</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
</tbody>
</table>
BEST PRACTICES AND IMPLEMENTATION

The SCA Standard Specifications specify low-emitting carpet and carpet pad complying with this credit requirements. New York State DEC does not currently include VOC limits for carpet or carpet pad.

Design Teams must specify complying products. Carpets complying with this standard can be found on referenced Carpet and Rug Institute website.

Design teams must review Contractor’s construction submittals and include VOC information on the Low-Emitting Material - Summary Form.

FloorScore is a voluntary, independent certification program that tests and certifies hard surface flooring and associated products for compliance with criteria adopted in California for indoor air emissions of Volatile Organic Compounds (VOCs) with potential health effects. The program uses a small-scale chamber test protocol and incorporates VOC emissions criteria developed by the California Department of Health Services, which are widely known as Section 1350.

CREDIT SUBMITTALS

<table>
<thead>
<tr>
<th>DESIGN DEVELOPMENT</th>
<th>CREDIT SUBMITTALS</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determine the credit compliance approach and identify SCA standards to be incorporated into the design documents.</td>
<td>LEED for Schools 2009 IEQ Credit 4.3 Low-Emitting Materials, Flooring Systems</td>
<td>SCA Design Requirements</td>
</tr>
<tr>
<td>60% Construction Documents</td>
<td>Architect’s Responsibility</td>
<td>None</td>
</tr>
<tr>
<td>Incorporate credit requirements in construction documents.</td>
<td>SCA Standard Specifications</td>
<td>G01600 Material and Equipment 09310 Ceramic Tile 09626 Resilient Athletic Flooring 09650 Resilient Flooring 09680 Carpet</td>
</tr>
<tr>
<td>100% Construction Documents</td>
<td>Architect’s Responsibility</td>
<td>SCA Standard Details</td>
</tr>
<tr>
<td>No credit submittal.</td>
<td>None</td>
<td>Other References</td>
</tr>
</tbody>
</table>

CONSTRUCTION

<table>
<thead>
<tr>
<th>Architect’s Responsibility</th>
<th>LEED for Schools 2009 IEQ Credit 4.3 Low-Emitting Materials, Flooring Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Low-Emitting Materials - Summary Form based on documentation submitted by Contractor.</td>
<td>SCA Design Requirements</td>
</tr>
<tr>
<td>Submit Certification Form with completed information for this credit.</td>
<td>None</td>
</tr>
</tbody>
</table>

LEED for Schools 2009 IEQ Credit 4.3 Low-Emitting Materials, Flooring Systems

SCA Design Requirements

None

SCA Standard Specifications

G01600 Material and Equipment 09310 Ceramic Tile 09626 Resilient Athletic Flooring 09650 Resilient Flooring 09680 Carpet

SCA Standard Details

None

Other References

The Carpet and Rug Institute: www.carpet-rug.org

Q3.4R LOW-EMITTING MATERIALS, COMPOSITE WOOD & AGRIFIBER PRODUCTS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.</td>
<td>Composite wood and agrifiber products used on the interior of the building (defined as inside the weatherproofing system) shall contain no added urea-formaldehyde resins. Laminating adhesives used to fabricate on-site and shop-applied composite wood and agrifiber assemblies shall contain no added urea-formaldehyde resins.</td>
<td>The SCA standards specifications specify compliant wood and agrifiber products. For instance, millwork is specified with compliant plywood, wood doors are specified with compliant cores, and MEP mounting panels are specified as fire-rated, non-urea-formaldehyde plywood.</td>
</tr>
<tr>
<td>This credit is required for all projects.</td>
<td>Composite wood and agrifiber products include particleboard, medium density fiberboard (MDF), plywood, wheatboard, strawboard, panel substrates and door cores. Materials considered fixtures, furniture and equipment (F&E) are not included.</td>
<td>Typical composite wood binder alternatives to urea-formaldehyde include phenol formaldehyde and MOI (methylene diphenyl isocyanate) and PVA (polyvinyl acetate). Review product cut sheets, MSD sheets, signed attestations or other official literature from the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Examples of products this credit would apply to include casework, millwork, plywood subflooring, wood doors and mounting boards for MEP panels. Because plywood roof deck for metal roofing is within the vapor barrier this credit would apply to that product as well. This credit does not apply to formwork.</td>
<td>Note that if the composite wood and agrifiber product contains no urea-formaldehyde, fire-rating treatments typically add no urea-formaldehyde.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Any composite wood or agrifiber products added to a specific project’s specifications must meet this credits requirements.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design teams must review Contractor’s construction submittals and include the appropriate information on the Low-Emitting Material - Summary Form.</td>
</tr>
</tbody>
</table>
LEED for Schools 2009 IEQ Credit 4.4
Low-Emitting Materials, Composite Wood & Agrifiber Products

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
06100 Rough Carpentry
06200 Finish Carpentry
06410 Custom Casework
08210 Wood Doors
09590 Wood Flooring
10100 Visual Display Boards
10415 Bulletin Boards
10652 Folding Metal Partitions
12302 Manufactured Wood Casework
12710 Fixed Audience Seating
12761 Wood Bleachers

SCA STANDARD DETAILS
06200 Finish Carpentry
06410 Custom Casework

OTHER REFERENCES
An update on formaldehyde
www.cpsc.gov/cpsspudpubs/726.html
Q4.1R INDOOR CHEMICAL & POLLUTANT SOURCE CONTROL

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
</tr>
</thead>
</table>
| Reduce exposure of building occupants to potentially hazardous particulates and chemical pollutants. | Design to reduce and control pollutant entry into buildings and later cross-contamination of regularly occupied areas.
 - Employ permanent entryway systems at least ten feet long in the primary direction of travel to capture dirt and particulates from entering the building at regular entry points that are directly connected to the outdoors. Acceptable entryway systems include permanently installed grates, grilles or slotted systems that allow for cleaning underneath. Qualifying entryways are those that serve as regular entry points for students or staff.
 - Where hazardous gases or chemicals may be present or are used (including Science Labs, Janitor’s Sink Closets, Grounds Equipment Storeroom, Receiving and General Storage, copying/printing rooms and garage areas), exhaust each space sufficiently to create negative air balance with respect to adjacent spaces with the doors to the room closed. For each of these spaces, provide self-closing doors and deck-to-deck partitions or a hard-lid ceiling. The exhaust rate shall be designed for at least 0.50 cubic foot per square foot, with no air re-circulation. Any make-up air provided in the area, must be a minimum of 10% less than the exhaust air.
 - Provide occupied areas with air filtration media that provides a Minimum Efficiency Reporting Value (MERV) of 13 or better. Unit ventilator filters shall have a MERV of a minimum of 7 (consistent with NY-CHPS requirements). Filtration should be applied to both return and outside air that is to be delivered as supply air.
 - Provide containment (a closed container for storage for off-site disposal in a regulatory compliant storage area, preferably outside the building) for appropriate disposal of hazardous liquid wastes in places where water and chemical concentrate mixing occurs (eg housekeeping, janitorial, etc). |
Design facility cleaning and maintenance areas with isolated exhaust systems for contaminants. Maintain physical isolation from the rest of the regularly occupied areas of the building. Install permanent architectural entryway systems such as grills or grates to prevent occupant-borne contaminants from entering the building. Install high-level filtration systems in air handling units processing both return air and outside supply air. Ensure that air handling units can accommodate required filter sizes and pressure drops.

Use of hazardous materials in schools is limited and a separate containment area will typically not need to be provided.

Design Development

Architect and HVAC Engineer’s Responsibility

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents. List designated entryways and any special circumstances or non-standard compliance paths taken by the project.

60% Construction Documents

Architect and HVAC Engineer’s Responsibility

- Incorporate credit requirements in construction documents, including showing filter rating on drawings.
- Submit updated documentation as necessary through to 100%.

100% Construction Documents

Architect and HVAC Engineer’s Responsibility

- Submit Certification Form with completed information for this credit.

Construction

Contractor’s Responsibility

- Submit signed and Design teams must review Contractor’s construction submittals and include VOC information on the Low-Emitting Material - Summary Form.ed air balancing report and statement that the installation meets the design criteria as specified.

References

LEED for Schools 2009 IEQ Credit 5
Indoor Chemical & Pollutant Source Control

NY-CHPS Version 1 Credit 5.3.3 Filter Efficiency

SCA Design Requirements
1.3.4.1 Entrances and Exits
6.2.0 General Overview of Heating Ventilation and Air Conditioning Systems
6.2.28 HVAC Design Requirements for Special Spaces

SCA Standard Specifications
12485 Foot Grilles
15781 Packaged Heating and Cooling Units
15852 Air Handling Units
15853 Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)
15854 Custom Packaged Rooftop Heating and Cooling Units (Constant Volume System)
15855 Commercial Packaged Rooftop Heating and Cooling Units
15857 Unit Ventilator

SCA Standard Details
None

Other References
Janitorial products pollution prevention:
http://www.westp2net.org/Janitorial/jp4.cfm

EPA green cleaning product information:
www.epa.gov/opptintr/epp

ASHRAE 62.1-2007, Table 6-4
Q4.2R ELECTRIC IGNITION STOVES

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid accumulation of carbon monoxide from pilot lights that can cause dangerous air quality conditions for staff and students by using electric ignition stoves.</td>
<td>Install only electric ignitions for all gas-fired cooking appliances for which electric ignitions are available.</td>
<td>The SCA Standard Specifications require electric ignition on cooking equipment for which this feature is available. Some equipment such as sectional ovens, gas deck type and the double deck ovens are not available with electric ignition.</td>
</tr>
</tbody>
</table>
DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
- Submit a narrative identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
- Incorporate credit requirements in construction documents.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

REFERENCES

NY-CHPS Version 1.0 Credit 5.3.5
Electric Ignition Stoves

SCA DESIGN REQUIREMENTS
7.3.13 Carbon Monoxide Detection and Alarm Systems

SCA STANDARD SPECIFICATIONS
- 11400 Food Service Equipment
- 11450 Domestic Type Equipment
- 11452 Culinary Arts Lab Equipment
- 16722 Stand-Alone Carbon Monoxide Alarms

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce indoor airborne dust levels during cleaning activities.</td>
<td>High Efficiency Particulate Arrestor (HEPA) vacuums shall be provided by through the SCA/F&E Unit as part of the initial equipment for the school. Obtain a written statement from the SCA/F&E Unit to confirm that HEPA vacuums are included in this project’s equipment list.</td>
<td>HEPA vacuums are on the Custodial Initial Equipment list so they are part of the entitlement package for each new school or major modernization and renovation.</td>
</tr>
</tbody>
</table>
DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
- Submit a narrative stating that the initial equipment selection list provided by DOE/DSF includes two (2) HEPA vacuums.

60% CONSTRUCTION DOCUMENTS
No credit submittal.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION

SCA PROJECT MANAGER’S RESPONSIBILITY
- Confirm custodial equipment list includes HEPA vacuum.

NY-CHPS Version 1.0 Credit 6.2.4
Purchase HEPA Vacuums

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
Q5.1R CONTROLLABILITY OF SYSTEMS, LIGHTING

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a high level of lighting system control by individual occupants or by specific groups in multi-occupant spaces (e.g. classrooms, cafeterias, auditoriums, gymnasiums, multi-purpose rooms) to promote the productivity, comfort and well-being of building occupants. This credit is required for all projects.</td>
<td>CASE 1. Administrative Offices and Other Regularly Occupied Spaces Provide individual lighting controls for 90% (minimum) of the building occupants to enable adjustments to suit individual task needs and preferences AND Provide lighting system controls for all learning spaces including classrooms, chemistry laboratories, art rooms, shops, music rooms, gymnasiums and dance and exercise studios to enable adjustments that meet group needs and preferences.</td>
<td>SCA Design Requirements and Standard Specifications incorporate standards for lighting controls for shared multi-occupant spaces that comply with this credit’s requirements by providing controllability at shared group multi-occupancy spaces (i.e., instructional rooms, cafeterias, gyms, libraries, auditorium) and in individual offices or shared office areas where workstations have task lighting under overhead storage.</td>
</tr>
<tr>
<td>CASE 2. Classrooms In classrooms, provide a lighting system that operates in at least 2 modes: general illumination and A/V.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DESIGN DEVELOPMENT

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Incorporate credit requirements in construction documents.
• Submit floor plans indicating quantity of lighting fixtures, control switches for lights, and furniture layouts for every room.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 IEQ Credit 6.1 Controllability of Systems, Lighting

SCA DESIGN REQUIREMENTS

7.2.1 Interior Lighting

SCA STANDARD SPECIFICATIONS

16140 Wiring Devices
16145 Lighting Control Devices

SCA STANDARD DETAILS

SCA Room Planning Standards

OTHER REFERENCES

A Field Study of PEM (Personal Environmental Module) Performance in Bank of America’s San Francisco Office Buildings:
Q5.2R CONTROLLABILITY OF SYSTEMS, THERMAL COMFORT

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide a thermal comfort control system adjusted by individual occupants or by specific groups in multi-occupant spaces (i.e., classrooms or conference areas) to promote the productivity, comfort and well-being of building occupants. This credit is required for all projects.</td>
<td>Provide comfort controls for 50% of building occupants in workspaces. In schools, this credit can be achieved by following SCA standards for thermal comfort controls by providing controllability at shared group multi-occupancy spaces (i.e., instructional rooms, cafeterias, gyms, libraries, auditoriums) and in select office areas. Operable windows can be used in lieu of individual comfort controls for occupants of areas that are 20 feet inside of and 10 feet to either side of the operable part of the window. The areas of operable window must meet the requirements of ASHRAE 62.1-2007, paragraph 5.1, Natural Ventilation (with errata but without addenda), including an operable area that is a minimum of 4% of the net occupied floor area. ASHRAE Standard 55-2004 (with errata but without addenda) lists the primary factors of thermal comfort as: air temperature, radiant temperature asymmetry, air speed and humidity. Comfort system control, for the purposes of this credit, is defined as the provision of control over at least one of these primary factors in the occupant’s local environment.</td>
<td>SCA Design Requirements and Standard Specifications require temperature controls for shared group multi-occupancy spaces. Additionally, per SCA standards, typical classrooms must have operable windows. Consider locating shared administrative office areas (which would not typically have individual thermostat controls) at perimeter so operable windows provide thermal comfort control for a greater number of staff.</td>
</tr>
</tbody>
</table>
CREDIT SUBMITTALS

DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
- Incorporate credit requirements in construction documents.
- Submit floor plans indicating locations of temperature control devices.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

MEP ENGINEER’S RESPONSIBILITY
- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 IEQ Credit
6.2 Controllability of Systems, Thermal Comfort

SCA DESIGN REQUIREMENTS
6.2.0 General Overview of Heating Ventilation and Air Conditioning Systems
6.2.1 HVAC Unit Centralization and Coordination
6.2.3 Non-Assembly Spaces (Classrooms, Offices, etc.)
6.2.4 Public Assembly Spaces

SCA STANDARD SPECIFICATIONS
15970 Temperature Control System
15985 Sequence of Operations

SCA STANDARD DETAILS
15985 HVAC Standard Detail Series

OTHER REFERENCES
Center for the Built Environment at Berkeley:
www.cbe.berkeley.edu
INTENT

Provide a comfortable thermal environment that supports the productivity and well-being of building occupants.

This credit is required for all projects.

REQUIREMENTS

Design HVAC systems and the building envelope to meet ASHRAE Standard 55-2004, Thermal Environmental Conditions for Human Occupancy. Demonstrate design compliance by providing:

- Design parameters in HVAC drawings.
- System capacities necessary to attain the design indoor conditions capacities to be indicated on equipment schedules.
- Floor plan layouts indicating locations of air outlets (i.e., diffusers, registers), terminal units (i.e., VAV boxes), and air capacities (CFMs)
- Floor plans coordinating location of air outlets, terminal units and control devices with architectural layouts
- Floor plans indicating control devices and the terminal unit being controlled, and specifications indicating performance adjustments criteria for control devices.
- HVAC drawings showing control network architecture and control diagrams for every typical system.
- In the specifications, incorporate requirements for the Contractor to provide the owner with maintenance and operating manuals.
- Control specifications indicating specific limits in the adjustment of manual controls.
- HVAC calculations.
- For natatoriums, demonstrate compliance with the “Typical Natatorium Design Conditions” defined in chapter 4 (Places of Assembly) of ASHRAE HVAC Applications Handbook, 2003 edition

BEST PRACTICES AND IMPLEMENTATION

The SCA standards incorporate requirements for prototypical HVAC systems that allow MEP designs to achieve the credit requirements.
DESIGN DEVELOPMENT

HVAC ENGINEER’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.
• Submit a narrative to describe any special circumstances or non-standard compliance paths taken by the project.

60% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
• Incorporate credit requirements in construction documents.
• Provide HVAC calculations to demonstrate design compliance in accordance with Section 6.1.1 of ASHRAE Standard 55-2004.
• Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

HVAC ENGINEER’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 IEQ Credit 7.1 Thermal Comfort-Design

ANSI/ASHRAE Standard 55-2004

SCA DESIGN REQUIREMENTS

6.2.0 General Overview of Heating Ventilation and Air Conditioning Systems
6.2.1 HVAC Unit Centralization and Coordination
6.2.3 Non-Assembly Spaces (Classrooms, Offices, etc.)
6.2.4 Public Assembly Spaces
6.2.9 Heating and Cooling Design Parameters (Load Calculations)
6.2.22 Kitchen Ventilation
6.2.28 HVAC Design Requirement for Special Spaces

SCA STANDARD SPECIFICATIONS

15970 Temperature Control System
15985 Sequence of Operations

SCA STANDARD DETAILS

None

OTHER REFERENCES

None
Provide the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

These credits are required, if feasible, for all projects.

Through one of three options, achieve daylighting in at least the following classroom spaces:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q7.1</td>
<td>75% classrooms</td>
<td>1</td>
</tr>
<tr>
<td>Q7.2</td>
<td>90% classrooms</td>
<td>1</td>
</tr>
<tr>
<td>Q7.3</td>
<td>75% other spaces</td>
<td>1</td>
</tr>
</tbody>
</table>

OPTION 1 - SIMULATION
Demonstrate through computer simulation that 75% or more of all classrooms achieve daylight illuminance levels of a minimum of 25 fc and maximum of 500 fc in a clear sky condition on September 21 at 9:00 a.m. and 3:00 p.m.; areas with illuminance levels of below or above the range don’t comply.

OPTION 2 - PRESCRIPTIVE
Use a combination of side-lighting and/or top-lighting to achieve a total Daylighting Zone that is at least 75% of all the regularly occupied classrooms. Side-lighting Daylight Zone:
- Achieve a product of the visible light transmittance (VLT) and window to floor area ratio (WFR) of daylight zone between the values of 0.150 and 0.180. Window area included in the calculation must be of the portion of the window at least 2'-6" above the floor.
- \(0.150 < \text{VLT} \times \text{WFR} < 0.180\)
- Ceiling should not obstruct a line in section that joins the window-head to a line on the floor that is parallel to the plane of the window and is, in distance from the plane of the glass as measured perpendicular to the plane of the glass, two times the height of the window head above the floor. See diagram below.
- Provide sunlight redirection and/or glare control devices to ensure daylight effectiveness. Exceptions for areas where tasks would be hindered by the use of daylight will be considered on their merits.

OPTION 3 - COMBINATION
Any of the above calculation methods may be combined to document the minimum daylight illumination in at least 75% of all regularly occupied spaces. The different methods used in each space must be clearly recorded on all building plans.

In all cases, only the square footage associated with the portions of rooms or spaces meeting the requirements can be applied towards the 75% (90%) of total area calculation required to qualify for this credit.

In all cases, provide glare control devices to avoid high-contrast situations that could impede visual tasks. Exceptions for areas where tasks would be hindered by the use of daylight will be considered on their merits. Exceptions on this basis may include auditoriums.
The SCA specifications include enhanced glazing products and manual shades for glare control to aid compliance with credit requirements. Standard classroom layouts are consistent with achieving this credit in classrooms.

To achieve this credit, consider building orientation, shallow floor plates and lower visible light transmittance values for glazing.

Measures for glare control that go beyond the SCA standard measures for addressing glare control will be evaluated on a project-by-project basis.

The SCA has not made this credit a requirement for all projects because of concerns about the limited applicability to modernization and renovation projects as well as shape of the room. For schools where a basement is cost effective, this credit may not be achievable.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents. Include a summary of occupancy areas that will be excluded from compliance, indicating why daylight would hinder their normal use.
- Submit Daylight and Views Calculations Form to indicate the percentage of spaces that comply.
- Submit plan demonstrating calculations results graphically.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Incorporate credit requirements in construction documents.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 IEQ Credit 8.1
Daylight & Views, Daylight 75% of Spaces

SCA DESIGN REQUIREMENTS

1.3.1.1 Building Location and Orientation
1.3.1.2 Planning Guidelines for New Schools and Additions

SCA STANDARD SPECIFICATIONS

08521 Aluminum Double-Hung Windows-New Installations
08524 Aluminum Projected Windows
08800 Miscellaneous Glazing
08920 Aluminum Curtain Walls
12501 Chain and Clutch Operated Window Shades

SCA STANDARD DETAILS

None

OTHER REFERENCES

Radiance Synthetic Imaging System: http://radsite.lbl.gov/radiance
http://www.wbdg.org/resources/electriclighting.php
Provide the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight and views into the regularly occupied areas of the building.

This credit is required, if feasible, for all projects.

While all projects are not required to achieve this credit, all projects must submit documentation to show whether or not the credit is achieved.

While LEED includes Daylight Modeling or calculations as options for documentation, the SCA recommends documenting compliance with calculations.

Achieve direct line of sight to the outdoor environment via vision glazing between 2'-6" and 7'-6" above finish floor for building occupants in 90% of all regularly occupied areas. Regularly occupied areas do not include storage rooms, mechanical rooms or circulation areas.

Determine the area with direct line of sight by totaling the regularly occupied square footage that meets the following criteria:

In plan view, the area is within sight lines drawn from perimeter vision glazing. In section view, a direct sight line can be drawn from the area to perimeter vision glazing.

Line of sight may be drawn through interior glazing. For multi-occupant spaces, the actual square footage with direct line of sight to perimeter vision glazing is counted. For private offices, the entire square footage of the office can be counted if 75% or more of the area has direct line of sight to perimeter vision glazing. For classrooms and other multi-occupant spaces, the actual square footage with a direct line of sight to perimeter glazing is counted.

It is permissible to exclude areas where tasks would be hindered by the use of daylight or the need for views. Exceptions on this basis might include auditoriums, gymnasiums and gymatotriums.
The SCA specifications include enhanced glazing products and manual shades for glare control to aid compliance with credit requirements. Standard classroom layouts are consistent with achieving this credit in classrooms.

With this credit the SCA is seeking to document whether the variety of school projects comply and to what extent.

In office areas, consider lower partition height and interior glazing.

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents. Include a summary of occupancy areas that will be excluded from compliance, indicating why complying fenestration would hinder their normal use.
- Determine if design as developed complies. Submit calculation spreadsheet form to indicate percentage of spaces that comply.
- Submit annotated drawings showing the line of sight from interior spaces through exterior windows in both plan and sectional views.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Incorporate credit requirements in construction documents.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.
Q7.5 VISUAL PERFORMANCE, ARTIFICIAL DIRECT-INDIRECT LIGHTING

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide pendant-mounted, glare-free ambient lighting in classrooms, improving the visual environment for students and teachers to read, write and interact. This credit is required, if feasible, for all projects.</td>
<td>Install an artificial lighting system to enhance occupants’ visual performance with pendant-mounted direct-indirect, semi-indirect or totally indirect luminaires mounted parallel to the window wall. Luminaires shall use T-8 fluorescent lamps with a minimum color-rendering index of 82. Energy efficient, direct-indirect lighting reduces lighting power density (LPD) by using less energy to deliver a better quality of light to the space. This credit applies to renovations where the bottom of fixtures is at 9 feet or higher above the finished floor. The credit also applies to select new school projects as reviewed with the SCA Design Manager. The criteria for applicability of this criteria is acceptability of the height to the bottom of the fixture above the finished floor. At Early Childhood Centers, the bottom of pendant fixtures may be a minimum of 8’-6” above the floor.</td>
<td>SCA Standards for interior lighting layouts incorporates fixture and layout requirements that will assist in achieving this credit. Design Requirement 7.2.1 includes specific dimensions for the acceptable distance between the ceiling and the bottom of light fixtures. Ceiling pendant-mounted “direct-indirect,” “semi-indirect” and “totally indirect” luminaires offer low-brightness while providing good definition of objects in the teaching space. The luminance of these lamps is enhanced by white or light colored ceilings, which reflect the light down into the learning space. This credit is generally feasible for renovation, modernization and ECC projects.</td>
</tr>
</tbody>
</table>
DESIGN DEVELOPMENT

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Submit a narrative describing whether this credit is feasible. For projects where it is feasible, summarize the design approach for credit compliance and identify applicable SCA standards to be incorporated into design documents.

• Submit a narrative to describe any special circumstances or non-standard compliance paths taken by the project.

60% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Incorporate SCA’s requirements in construction documents including the lighting layouts and lighting fixture schedules.

• Submit point by point lighting level (photometric) calculations for typical and non-typical areas.

• Indicate calculation method and parameters, include LPD (Lighting Power Density)

100% CONSTRUCTION DOCUMENTS

ELECTRICAL ENGINEER’S RESPONSIBILITY

• Submit Certification Form with completed information for this credit.

• Submit updated documentation as necessary.

CONSTRUCTION

No credit submittal.

REFERENCES

NY-CHPS Version 1.0 Credit 5.2.1
Visual Performance, Artificial Indirect Lighting

SCA DESIGN REQUIREMENTS

7.2.1 Interior Lighting

SCA STANDARD SPECIFICATIONS

16500 Interior Building Lighting
16501 Lamps, Ballasts and Accessories

SCA STANDARD DETAILS

None

OTHER REFERENCES

Advanced Lighting Guidelines: 2003 Edition:
http://www.newbuildings.org/lighting.htm

Design Lights™ Consortium Classroom Knowhow™ guide:
http://www.designlights.org
INTENT
To provide classrooms that are quiet, so that teachers can speak to their class without straining their voices and students can effectively communicate with each other.

This credit is required for all projects.

REQUIREMENTS
Design classrooms and other core learning spaces to include sufficient sound-absorptive finishes for compliance with reverberation time requirements as specified in ANSI Standard S12.60-2002, Acoustical Performance Criteria, Design Requirements and Guidelines for Schools. Achieve a maximum background noise level from heating, ventilating and air conditioning (HVAC) systems in classrooms and other core learning spaces of 45 dBA.

AND

CASE 1. Classrooms & Core Learning Spaces < 20,000 Cubic Feet.
For classrooms and core learning spaces less than 20,000 cubic feet, options for compliance include, but are not limited to the following:

OPTION 1
Confirm that 100% of all ceiling areas (excluding lights, diffusers and grilles) in all classrooms and core learning spaces are finished with a material that has a Noise Reduction Coefficient (NRC) of 0.70 or higher.

OR

OPTION 2
Confirm that the total area of acoustical wall panels, ceiling finishes, and other sound-absorbent finishes equals or exceeds the total ceiling area of the room (excluding lights, diffusers and grilles) Materials must have an NRC of 0.70 or higher to be included in the calculation.

CASE 2. Classrooms and Core Learning Spaces > 20,000 Cubic Feet
For classrooms and core learning spaces 20,000 cubic feet or greater. Confirm through calculations described in ANSI Standard S12.60-2002 that all classrooms and core learning spaces greater than or equal to 20,000 cubic feet are designed to have a reverberation time of 1.5 seconds or less.

BEST PRACTICES AND IMPLEMENTATION
- **BACKGROUND SOUND LEVELS**
 HVAC systems generally capable of meeting these low background noise level requirements include standard non fan powered VAV boxes with a silencer used in the downstream supply duct system or chilled beam. Successful installations of floor mounted unit ventilators usually require oversizing and slowing fans. Exposed fan coil or unit ventilator equipment can rarely be selected to meet these goals.

- **REVERBERATION TIMES**
 Use of a lay-in sound-absorptive ceiling having a minimum NRC/SAA of 0.70 is an effective method for meeting the reverberation time goals in classrooms. On occasion, it may be necessary to provide supplemental sound absorption on upper wall areas should the net area of sound absorptive ceiling be limited by flat-lensed light fixtures or gypsum board soffits.
CREDIT SUBMITTALS

DESIGN DEVELOPMENT

ARCHITECT AND HVAC ENGINEER’S RESPONSIBILITY
• Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT AND HVAC ENGINEER’S RESPONSIBILITY
• Integrate the design criteria into the design documents.
• Provide write-up describing each special separation for each location and detailed construction.
• Submit 60% documents to a qualified acoustical consultant and obtain a report verifying that the project has been designed to meet the relevant requirements.
• Submit large scale details.
• Submit updated documentation as necessary through to 100%.
• Submit 100% documents to a qualified acoustical consultant and obtain confirmation that project design meets the relevant requirements.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

REFERENCES

LEED for Schools 2009 IEQ Pr.3
Minimum Acoustical Performance
ANSI/ASHRAE Standard S12.60-2002
ASHRAE Handbook Chapter 47 Sound and Vibration Control 2003 HVAC Applications

SCA DESIGN REQUIREMENTS
1.3.1.9 Architectural Acoustic Standards
5.4.1 Suspended Ceilings
6.2.25 HVAC Acoustical Standards

SCA STANDARD SPECIFICATIONS
09510 Acoustical Ceilings
15853 Custom Rooftop Units (VAV)
15854 Custom Rooftop Units (CV)
15855 Commercial Rooftop Units
15857 Unit Ventilator
15891 Metal Ductwork
15910 Duct Accessories
15932 Active Chilled Beam
15933 DOAS Air Handling Units
15993 Balancing of Systems

SCA STANDARD DETAILS
None

OTHER REFERENCES
q8.2 ENHANCED ACOUSTICAL PERFORMANCE & SOUND ISOLATION FOR SPECIAL SPACES

INTENT

To provide classrooms that facilitate better teacher-to-student and student-to-student communication through effective acoustical design and to reduce noise transfer from vertically adjacent spaces that generate significant sound or impact noise levels to offices, classrooms and other noise sensitive spaces located below.

REQUIREMENTS

Sound Transmission
Design the building shell, classroom partitions and other core learning space partitions to meet the Sound Transmission Class (STC) requirements of ANSI Standard S12.60-2002, Acoustical Performance Criteria, Design Requirements and Guidelines for Schools, except windows, which must meet an STC rating of at least 35.

AND

Background Noise
Reduce background noise level to 40 dBA or less from heating, ventilating and air conditioning (HVAC) systems in classrooms and other core learning spaces.

Provide structural sound-isolation slab construction to isolate the special noise source space from spaces below to yield the degree of sound isolation listed in the table.

BEST PRACTICES AND IMPLEMENTATION

The project team shall employ the services of an Acoustical Consultant in order to assume compliance with credits’ intent and documentation.

An STC rating must be determined for every wall, floor, and ceiling assembly that may affect interior noise levels in a core learning space. The STC ratings for several wall assemblies are published in SCA Design Requirements

This credit is typically feasible for new construction projects and may apply to some renovation and modernization projects as well. This credit is not feasible for projects using a decoupled HVAC system with floor-mounted unit ventilators.

SOUND ISOLATION - INTERIOR

Partition assemblies to meet the required STC ratings have been incorporated into the Design Requirement 1.3.1.9 on Architectural Acoustics and interior partition details. Specific conditions and proximities should be reviewed by the project acoustical consultant. Outlets and other partition penetrations should be offset.

The project acoustical consultant should also evaluate required measures for classrooms adjacent to the cafeteria. Impact Insulation Class IIC-45 for instructional/office spaces above classrooms (not gymnasiums, music, dance or auditoriums) may be met via use of a concrete slab and a well-sealed suspended lay-in acoustical panel ceiling in the classroom below.

SOUND ISOLATION - EXTERIOR

STC-50 exterior walls can be met with CMU and face brick. Lightweight (curtain wall) façade constructions need careful review for sound isolation performance by the acoustical consultant.

Sound Isolation Table

<table>
<thead>
<tr>
<th>Adjacent Space Type</th>
<th>Minimum STC Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other Classrooms</td>
<td>50</td>
</tr>
<tr>
<td>Outdoors</td>
<td>50</td>
</tr>
<tr>
<td>Bathrooms</td>
<td>53</td>
</tr>
<tr>
<td>Corridor</td>
<td>45</td>
</tr>
<tr>
<td>Offices, Conference Rooms</td>
<td>45</td>
</tr>
<tr>
<td>Music/Dance Rooms</td>
<td>60</td>
</tr>
<tr>
<td>Mechanical Equipment Room</td>
<td>60</td>
</tr>
<tr>
<td>Cafeteria, Gym, Natatorium</td>
<td>60</td>
</tr>
</tbody>
</table>

* Excluding main entry doors.

Impact Sound Isolation Table

<table>
<thead>
<tr>
<th>Adjacent Overhead Space</th>
<th>Impact Sound Isolation, ITC**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overhead Space</td>
<td>45</td>
</tr>
<tr>
<td>Music/Dance</td>
<td>60</td>
</tr>
<tr>
<td>Mechanical</td>
<td>60</td>
</tr>
<tr>
<td>Gym (if overhead)</td>
<td>60</td>
</tr>
</tbody>
</table>

** Impact Insulation Class (IIC) ratings shall apply without carpeting installed on the floor above.
Building planning should avoid vertical adjacency of noisy spaces above instructional spaces or offices.

To meet IIC-60 for spaces with high noise levels or impact noise, such as music suites or gymnasiums, that are located over instructional rooms and offices, as well as if instructional and office spaces are located over the gym, a special floated concrete floor construction is needed. Adequate floated floor construction is comprised of a 4-inch thick normal weight concrete slab on isolators with a 2-inch air space to the base slab. The most convenient systems are so-called "jack-up" slab systems available from Kinetics Noise Control, Mason Industries, and Vibration Mounting Controls.

DESIGN DEVELOPMENT

ARCHITECT'S RESPONSIBILITIES

- Submit a narrative statement describing whether this credit is applicable. For project where this credit applies, summarize the specific design approach at each condition for credit compliance and identify applicable SCA standards to be incorporated into design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITIES

- Incorporate requirements in construction documents.
- Provide write-up describing each special separation for each location and detailed construction
- Submit 60% documents to a qualified acoustical consultant and obtain a report verifying that the project has been designed to meet the relevant requirements.
- Submit updated documentation as necessary through to 100%.
- Submit 100% documents to a qualified acoustical consultant and obtain confirmation that project design meets the relevant requirements.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITIES

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

No credit submittal.

REFERENCES

- LEED for Schools 2009 IEQ Credit 9 Enhanced Acoustical Performance
- ASHRAE Handbook, Chapter 47, Sound and Vibration Control, 2003 HVAC Applications
- NY-CHPS Version 1.0 Credit 5.5.2 Sound Isolation

SCA DESIGN REQUIREMENTS

1.3.1.9 Architectural Acoustic Standards
4.2.1 Exterior Masonry Walls
4.3.1 Window Types
5.1.1 Typical Room Finishes
5.2.2 Interior Partitions
5.3.1 Floor Types
5.5.1 Interior Doors and Frames
6.2.25 HVAC Acoustical Standards

SCA STANDARD SPECIFICATIONS

- 08521 Aluminum D.H. Windows
- 08524 Aluminum Projected Windows
- 09260 Gypsum Board Assemblies

SCA STANDARD DETAILS

- 0926010a Partition Details
- 0926010b Partition Details

OTHER REFERENCES

Q8.3 ACOUSTIC WINDOWS

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide adequate control of exterior noise potentially penetrating into instruction rooms and offices at sites adjoining objectionable exterior transportation noise sources - highways, railroads and airports.</td>
<td>Typical requirement for credit Q8.1 is to design and select exterior façade construction to achieve STC-40 (minimum) for fenestration and STC-50 for all other façade elements. Higher STC levels for fenestration should be considered on a case-by-case basis as recommended by project acoustical consultant. This credit would apply to schools severely impacted by transportation noise sources such as aircraft or elevated trains.</td>
<td>Plan the location of instructional spaces away from objectionable noise sources. Consider acoustically improved windows for sites where there are high levels of inbound transportation noise. External wall and fenestration design need careful review for sound isolation performance by a qualified acoustical consultant.</td>
</tr>
</tbody>
</table>
Acoustic Windows: Credit Q.3

Design Development

Architect’s Responsibilities
- Submit a narrative statement describing whether this credit is applicable. For project where this credit applies, summarize the design approach for credit compliance and identify applicable SCA standards to be incorporated into design documents.

60% Construction Documents

Architect’s Responsibilities
- Obtain acoustical laboratory test reports from window manufacturers on candidate window assemblies to verify STC ratings on operable assemblies. Submit a report from a qualified acoustical consultant documenting that the façade elements meet the above requirements as a minimum and evaluating the need for improved fenestration performance.

100% Construction Documents

Architect’s Responsibilities
- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

Construction

Contractor’s Responsibility
- Provide a report from a qualified acoustical consultant verifying that the relevant requirements have been met.

SCA Design Requirements

1.3.1.9 Architectural Acoustic Standards

SCA Standard Specifications

- 08521 Aluminum Double Hung - New
- 08524 Aluminum Projected Windows

SCA Standard Details

None

Other References

- National Clearinghouse for Educational Facilities:
 - http://www.edfacilities.org
- Acoustical Society of America:
 - http://asa.aip.org/classroom/booklet.html
- American National Standards Institute:
 - http://wwwansi.org
- American Speech-Language-Hearing Association:
 - http://wwwasha.org
Because some environmental issues are unique to a locale, USGBC regional councils have identified distinct environmental zones within their areas and allocated six credits to encourage design teams to focus on regional priorities. A project that earns a Regional Priority credit automatically earns one point in addition to any points awarded for that credit. Up to four extra points can be earned in this way.

A Regional Priority credits are based on its zip code.
To provide an incentive for the achievement of credits that address geographically specific environmental priorities.

This credit is required, if feasible, for all projects.

Each Regional Priority Credit is worth an additional single point and a total of four additional points may be earned by achieving Regional Priority credits, with one point earned per credit.

Earn 1-4 of the 6 Regional Priority credits identified by the USGBC regional councils and chapters as having environmental importance for a project’s region. A table of Regional Priority credits for the five boroughs of New York City are provided below.

Refer to the Implementation and calculation section under each particular Regional Priority credit’s listing.

Regional Priority Credits for Schools in New York City

<table>
<thead>
<tr>
<th>Borough</th>
<th>Zip Code Range</th>
<th>Credit 1</th>
<th>Credit 2</th>
<th>Credit 3</th>
<th>Credit 4</th>
<th>Credit 5</th>
<th>Credit 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manhattan</td>
<td>10001 - 10282</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
<tr>
<td>Staten Island</td>
<td>10301 - 10314</td>
<td>S1.4</td>
<td>S2.1</td>
<td>S3.1</td>
<td>WEc2</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
<tr>
<td>Bronx</td>
<td>10451 - 10499</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
<tr>
<td>Queens</td>
<td>11001 - 11099</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
<tr>
<td>11030, 11050</td>
<td>S2.1</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
<tr>
<td>11354 - 11697</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
<td></td>
</tr>
<tr>
<td>Kings</td>
<td>11201 - 11256</td>
<td>S3.1</td>
<td>A2.2</td>
<td>WEc2</td>
<td>A3.1(40%/36%)</td>
<td>A3.2(1%)</td>
<td>M1.2(75%)</td>
</tr>
</tbody>
</table>
Since these are not new credits, GSG project teams do not need to attempt them in addition to the other GSG credits they are attempting. If the project earns an RPC, it will also earn the associated bonus point.

The concept of Regional Priority Credits was introduced incentives in the rating system to encourage achievement of credits that address geographically specific environmental priorities. The incentive to achieve the credits is in the form of a bonus point. If an RPC is earned, then a bonus point is awarded to the project’s total points.

The Design Team, in conjunction with the project’s LEED AP (if applicable) determines which of the appropriate RPC’s to claim and indicates those selected in the checklist in the cells provided.

Refer to the standards for a particular Regional Priority credit as listed within the Green Schools Guide.
This section requires a LEED Accredited Professional as part of the design team and includes optional credits that may be applied to unique projects when pre-authorized by the SCA.

Optional credits include provisions for non-roof heat island effect; optimizing energy performance; renewable energy systems; additional sustainable materials and furnishings; daylight harvesting and using the building to teach students about sustainable design features.

The SCA supports the added sustainable benefits afforded by the optional additional credits and will encourage application of these credits for projects that receive special funding and/or have unique conditions that warrant exploration of the alternatives offered by these credits.
To support and encourage the design integration required by an established level of familiarity with LEED, upon which the NYC Green Schools Guide is based, and to facilitate the sustainable design application and certification process for school.

This credit is required for all projects.

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>To become a LEED Accredited Professional, the LEED NC Accreditation Exam offered by the Green Building Certification Institute (GBCI) must be successfully passed and an accreditation issued by GBCI.</td>
<td>At least one principal participant of the project team shall be a LEED Accredited Professional (AP)</td>
<td></td>
</tr>
</tbody>
</table>

To support and encourage the design integration required by an established level of familiarity with LEED, upon which the NYC Green Schools Guide is based, and to facilitate the sustainable design application and certification process for school.

This credit is required for all projects.
DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
• Submit a narrative listing the names and firm of the LEED Accredited Professional (LEED AP) participating on the Design Team. Include a brief description of the LEED AP’s project role(s).
• Submit a copy of the LEED AP certificate.

60% CONSTRUCTION DOCUMENTS
No credit submittal.

100% CONSTRUCTION DOCUMENTS
ARCHITECT’S RESPONSIBILITY
• Submit Certification Form with completed information for this credit.

CONSTRUCTION
No credit submittal.

LEED for Schools 2009 Credit ID 2
LEED Accredited Professional

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
LEED website:
www.usgbc.org
HEAT ISLAND EFFECT, NON-ROOF

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
</table>

Reduce heat islands (thermal gradient differences between developed and undeveloped areas) to minimize impact on microclimate and human and wildlife habitat.

This credit is optional. This credit is only to be done with the approval of the Authority.

Provide any combination of the following strategies for 50% of the site hardscape (including roads, sidewalks, courtyards):

- Provide shade from existing tree canopy or within five years of landscape installation; landscaping (trees) must be in place at the time of occupancy.
- Provide shade from structures covered by solar panels that produce energy used to offset some non-renewable resource use.
- Provide shade from architectural devices or structures that have a solar reflectance index (SRI) of at least 29.
- Use hardscape materials with SRI of at least 29.
- Use an open grid pavement system (at least 50% pervious).

Employ strategies, materials and landscaping techniques that reduce heat absorption of exterior materials. Use shade (calculated on June 21, noon solar time) from native or adapted trees and large shrubs, vegetated trellises or other exterior structures supporting vegetation. Consider the use of new coatings and integral colorants for asphalt to achieve light-colored surfaces instead of blacktop. Position photovoltaic cells to shade impervious surfaces. Consider replacing constructed surfaces (i.e. roads, sidewalks, etc.) with vegetated surfaces such as vegetated roofs and open grid paving or specify high-albedo materials, such as concrete, to reduce the heat absorption.
CREDIT SUBMITTALS

REFERENCES

DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY

- Summarize what systems are proposed to achieve compliance in a narrative.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit a diagram showing project areas to highlight the location of specific materials required to achieve the requirement of this credit.
- Submit calculation of total area of installed SRI compliant non-roof materials expressed as a percentage of total site hardscape areas.
- Submit a listing of installed materials and their SRI values.
- Submit updated documentation as necessary through to 100%.

100% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.

CONSTRUCTION

DESIGN TEAM'S RESPONSIBILITY

- Review Contractor's submittals for compliance with credit requirements.

LEED for Schools 2009 SS Credit 7.1
Heat Island Effect: Non-Roof

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
None
A2.2 STORMWATER DESIGN, QUANTITY CONTROL

INTENT

Limit disruption of natural hydrology by reducing impervious cover, increasing on-site infiltration, and managing stormwater runoff.

This credit is optional and may only be pursued with SCA direction/permission.

Porous Asphalt Construction Sequence

OPTION 1 –
EXISTING IMPERVIOUSNESS IS LESS THAN OR EQUAL TO 50%
Implement a stormwater management plan that prevents the post-development peak discharge rate and quantity from exceeding the pre-development peak discharge rate and quantity for the one- and two-year, 24-hour design storms.

OR

OPTION 2 –
EXISTING IMPERVIOUSNESS IS GREATER THAN 50%
Implement a stormwater management plan that results in a 25% decrease in the volume of stormwater runoff from the two-year, 24-hour design storm.

REQUIREMENTS

Design Teams should list this credit as being pursued on the Schematic Submission Green Schools Rating System Project Checklist only if the SCA has provided direction to that effect.

BEST PRACTICES AND IMPLEMENTATION

Potential Non-Roof Measures:

1. Specify vegetated surfaces to minimize impervious surfaces and maintain natural stormwater flows.

2. Use porous asphalt playyards. SCA specification 02516 Exposed Porous Asphalt Paving and Aggregate Base applies to this use.

NY State DEC is currently developing Best Practice Standards for porous asphalt paving. NYC DEP acceptance of infiltration will have to be acquired.

Design parameters for asphalt paving include the following:
- Impervious area to infiltration area ratio should be 5:1
- Suitable permeable soil conditions are required for infiltration
- Maintain bottom of stone base of drainage layer 3 ft above high water table and 2 ft above bedrock
- Not recommended for slopes > 6%

Potential Roof Measures:

1. Stormwater from roofs may be channeled into appropriately sized stone infiltration bed under porous asphalt used for non-roof conditions, if and when NYC DEP allows this practice.

2. Green roofs can reduce the stormwater runoff substantially.

NYC DEP acceptance of the
contribution of green roofs must be acquired if the green roof (s) are to be part of the calculations.

Green roofs can reduce stormwater runoff of the roof by 25%, by using either 5" depth extensive green roof over 50% of the roof or 4" modular planter system over 75% of the roof.

Green roofs can also be installed over an egg crate drainage layer to comply with DEP stormwater detention regulations (stormwater detention systems sized for 10-year / 24-hour storm events with a maximum allowable water level on the roof of 3 inches).

If this credit is achieved with a green roof, projects may also pursue credits:
S3.1 Site Development Protect or Restore Habitat
S3.2 Maximize Open Space
S4.1 Stormwater Design, Quality Control
S5.1 Heat Island Effect, Roof
A6.1 The School Building as a Teaching Tool

3. Stormwater drainage structures: Sites greater than an acre with separate storm sewer systems and located in a TMDL watershed or discharging to an impaired 303(d) listed water source must develop a Stormwater Pollution Prevention Plan (SWPPP) that includes water quantities and quality control measures.

Following the NYS Stormwater Management Design Manual, determine the water quantity storage volume (volume of rain water to be detained and treated on site). Confirm calculated volume of stormwater system to meet SPDES requirement is greater than or equal to LEED requirement.

DESIGN DEVELOPMENT

ARCHITECT'S RESPONSIBILITY

- For projects where the SCA has agreed that this credit may be pursued, indicate specific conditions that make this credit achievable. Summarize what systems are proposed to achieve compliance.

60% CONSTRUCTION DOCUMENTS

CIVIL ENGINEER'S RESPONSIBILITY

- Submit calculations confirming that stormwater reductions to achieve this credit have been met. Include:
 - the pre-development site run-off rate (cfs).
 - the pre-development site run-off quantity (cf).
 - the post-development site run-off rate (cfs).
 - the post-development site run-off quantity (cf).

(see LEED for Schools V3.0 Reference Guide Credit SS6.1 for reference on calculations)

100% CONSTRUCTION DOCUMENTS

CIVIL ENGINEER'S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

CONSTRUCTION

No credit submittal.

REFERENCES

LEED for Schools 2009 SS Credit 6.1 Stormwater Design Quantity Control

SCA DESIGN REQUIREMENTS

2.1.1 Asphalt and Concrete Pavements
4.4.1.1 Roof Types
6.1.11 Stormwater Management

SCA STANDARD SPECIFICATIONS

02516 Exposed Porous Asphalt Paving and Aggregate Base
02723 Storm Drainage System
07561 Fluid Applied Protected Membrane Roofing (Planted Roof)

SCA STANDARD DETAILS

None

OTHER REFERENCES

Porous Asphalt Information:
http://www.hotmix.org/PDFs/Asphalt_The_Right_Choice_For_Porous_Pavements.pdf

Porous Asphalt Installation:

NYS Stormwater Manuals:
http://www.dec.state.ny.us/website/dow/toolbox/instr_man.pdf
http://www.dec.state.ny.us/website/dow/toolbox/swmanual/nysswmdm03.pdf

PA Stormwater BMP Design Manual:

Green roof information:
http://www.hrt.msu.edu/greenroof

CREDIT SUBMITTALS
A3.1 OPTIMIZE ENERGY PERFORMANCE

INTENT

Achieve energy cost reduction levels above the required minimum standard in credit E4.1R to reduce environmental impacts associated with excessive energy use.

This credit is required, if feasible, for all projects.

REQUIREMENTS

<table>
<thead>
<tr>
<th>New %</th>
<th>Renovation %</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>14%</td>
<td>10%</td>
<td>2</td>
</tr>
<tr>
<td>16%</td>
<td>12%</td>
<td>3</td>
</tr>
<tr>
<td>18%</td>
<td>14%</td>
<td>4</td>
</tr>
<tr>
<td>20%</td>
<td>16%</td>
<td>5</td>
</tr>
<tr>
<td>22%</td>
<td>18%</td>
<td>6</td>
</tr>
<tr>
<td>24%</td>
<td>20%</td>
<td>7</td>
</tr>
<tr>
<td>26%</td>
<td>22%</td>
<td>8</td>
</tr>
<tr>
<td>28%</td>
<td>24%</td>
<td>9</td>
</tr>
<tr>
<td>30%</td>
<td>26%</td>
<td>10</td>
</tr>
</tbody>
</table>

1. This credit should only be pursued when project specific energy modeling is required because: the SCA prototypical energy cost modeling does not apply; it is required for the project to meet NY State Energy Code; or the SCA has directed that school specific modeling be conducted.

The SCA may direct project specific modeling be conducted because either the SCA prototypical energy systems do not apply to a specific site, or the SCA has determined that there are opportunities for non-standard energy systems at particular sites such as geothermal systems at a site with an underlying aquifer available for heat transfer.

2. Points for these credits are based on project specific energy cost reduction modeling per ASHRAE 90.1-2007, Schedule G.

3. To demonstrate energy cost reduction as required by this credit, conduct a whole building energy simulation per ASHRAE/IESNA standard 90.1-2007 (without amendments) using the building performance rating method in Appendix G.

4. Projects pursuing this credit must also demonstrate energy cost reduction by conducting a whole building energy simulation per ASHRAE 90.1-2007 as referenced in NYS-ECCC, to confirm compliance with Local Law 86/05 energy cost reduction requirements.

5. A payback analysis must be completed per LL86/05 to determine if proposed systems that achieve 25% or 30% energy cost savings have a less than seven year payback – in which case they must be pursued.

Project with Prototypical SCA energy conservation measures

- LL86/05
 - Achieve minimum of 20% energy cost reduction per prototypical modeling using ASHRAE 90.1-2007
 - Payback analysis has been completed for prototypical systems achieving 20-30% savings
 - NYC Green Schools Rating System E4.1R Minimum Energy Compliance
 - Compliance is achieved per prototypical energy conservation measures. Prototypical modeling has been conducted to demonstrate compliance
 - No credit points
 - NYC Green Schools Rating System A3.1 Optimize Energy Performance
 - Credit points cannot be achieved for this credit using prototypical modeling

Atypical project requiring project specific modeling - as directed by SCA

- LL86/05
 - Model alternate energy conservation measures selected with SCA to achieve 20-30% energy cost reduction for regulated loads, using ASHRAE 90.1-2007
 - Conduct payback analysis for systems achieving 25-30% savings
 - Select appropriate energy conservation measures with SCA
 - NYC Green Schools Rating System E4.1R Minimum Energy Compliance
 - Demonstrate compliance with project specific modeling
 - No credit points
 - NYC Green Schools Rating System A3.1 Optimize Energy Performance
 - Establish energy cost reduction based on project specific modeling
 - Achieve credit points based on level of energy cost savings
Design Teams should list this credit as being pursued on the Schematic Submission Green Schools Rating System Project Checklist only if the SCA has provided direction to that effect.

Some of the key differences between energy cost reduction modeling using ASHRAE 90.1-1999 and ASHRAE 2007, Schedule G include:

1. In ASHRAE 90.1-1999, proposed energy systems are compared to a corresponding baseline energy system. Under ASHRAE 2007, proposed energy systems are compared to common baseline energy systems: buildings under 150,000 square foot are compared to air cooled HVAC systems and buildings over 150,000 square foot are compared to water cooled HVAC systems. Thus ASHRAE 90.1-2007 facilitates comparisons between different energy systems.

2. The baseline energy system in ASHRAE 90.1-2007 have smaller window areas than the baseline energy systems in ASHRAE 90.1-1999.

3. ASHRAE 90.1-2007 includes non-regulated energy loads (including plug loads, exterior lighting and elevators), while ASHRAE 90.1-1999 doesn’t include plug-loads.

DESIGN DEVELOPMENT

MEP ENGINEER’S RESPONSIBILITY

- For projects where the SCA has agreed that this credit may be pursued, indicate specific conditions that make this credit achievable. Summarize what systems are proposed to achieve compliance.

60% CONSTRUCTION DOCUMENTS

MEP ENGINEER’S RESPONSIBILITY

- Submit LL86/05 Reporting Form with energy system related information. Provide preliminary energy reduction calculation results.
- Incorporate requirements in construction documents.
- Submit payback analysis per LL86/05 requirements.

100% CONSTRUCTION DOCUMENTS

MEP ENGINEER’S RESPONSIBILITY

- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.
- Submit updated LL86 Reporting Form.

CONSTRUCTION

- Submit updated LL86 Reporting Form.

REFERENCES

LEED for Schools 2009 EA Credit 1
Optimize Energy Performance

SCA DESIGN REQUIREMENTS
None

SCA STANDARD SPECIFICATIONS
None

SCA STANDARD DETAILS
None

OTHER REFERENCES
Local Law 86/05
On-Site Renewable Energy

<table>
<thead>
<tr>
<th>Intent</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encourage and recognize use of on-site renewable energy self-supply in order to reduce environmental and economic impacts associated with fossil fuel energy use.</td>
<td>Use on-site renewable energy systems to offset building energy cost by a minimum of 2.5%. Calculate project performance by expressing the energy produced by the renewable systems as a percentage of the building annual energy use using the references below.</td>
</tr>
<tr>
<td>This credit is optional and may only be pursued with SCA direction/permission.</td>
<td>% Renewable Energy</td>
</tr>
<tr>
<td></td>
<td>1%</td>
</tr>
<tr>
<td></td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>13%</td>
</tr>
</tbody>
</table>

Use the building annual energy cost calculated in E 3.1R or use the Department of Energy (DOE) Commercial Buildings Energy Consumption Survey (CBECS) database to determine the estimated electricity use. (Table of use for different building types is provided in the LEED-NC Reference Guide.)

The table below describes the minimum % renewable energy for each point threshold.

Photovoltaic (PU) Solar Panels at Bronx High School of Science
Design Teams should list this credit as being pursued on the Schematic Submission Green Schools Rating System Project Checklist only if the SCA has provided direction to that effect.

Currently, the cost of renewable energy is high. With the advent of future technology, renewable energy costs may decrease to the point they are economically viable for schools.

Assess the project for non-polluting and renewable energy potential including solar, wind and geothermal strategies. When applying these strategies, take advantage of net metering with the local utility.

Solar Hot Water Collectors at Bronx High School of Science

DESIGN DEVELOPMENT

MEP ENGINEER’S RESPONSIBILITY

- For projects where the SCA has agreed that this credit may be pursued, indicate specific conditions that make this credit achievable. Summarize what systems are proposed to achieve compliance.

60% CONSTRUCTION DOCUMENTS

No credit submittal.

100% CONSTRUCTION DOCUMENTS

MEP ENGINEER’S RESPONSIBILITY

- Submit description of the On-Site Renewable Energy Source(s) used, the annual energy generated from each source and the backup fuel for each source (i.e., the fuel that is used when the renewable energy source is unavailable). Include the source of the annual energy cost information (energy model or industry database) and provide the appropriate energy values and costs.
- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.

REFERENCES

LEED for Schools 2009 Credit EA 2
On-Site Renewable Energy

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

None

SCA STANDARD DETAILS

None

OTHER REFERENCES

American Wind Energy Association:
www.awea.com

Net Metering:
www.eere.energy.gov/greenpower/netmetering

National Renewable Energy Laboratory:
www.nrel.gov

Database of State Incentives for Renewable Energy:
www.dsireusa.org
A4.1 LOW-EMITTING MATERIALS, FURNITURE & FURNISHINGS

INTENT

Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

This credit is optional and may only be pursued with SCA direction/permission.

REQUIREMENTS

Use furniture systems and seating that are low VOC, either Greenguard certified or registered, or whose emissions meet, or are lower than, the best practice air emissions standards as established by the US EPA’s Environmental Technology Verification (ETV) test method in a qualified testing laboratory.

Emission Limits for furniture systems:
- Total VOC < .5mg/m³, Formaldehyde < .05 ppm,
- Total Aldehydes < .01 ppm, 4-PC as an odorant below the limits of detection.

For seating:
- Total VOC < .25 mg/m³, formaldehyde < .025 ppm.

Furniture systems as referred to in this credit refers to work station systems.

BEST PRACTICES AND IMPLEMENTATION

Design Team should list this credit as being pursued on the Schematic Submission Green Schools Rating System Project Checklist only if the SCA has provided direction to that effect.

The Design Team should coordinate with SCA/F&E Unit during the DD and 60% construction document phases so that research on complying furniture items can begin as necessary.

While this credit only requires furniture systems and seating to meet VOC/Greenguard requirements, the SCA may choose to review additional items for this requirement.

One compliance option is to consider pre-conditioning furniture products offsite.
Design Development

SCA / F&E Unit Responsibility
- For projects where the SCA has agreed that this credit may be pursued, indicate specific conditions that make this credit achievable. Summarize how credit will be achieved.
- Submit package of drawings and program for SCA/F&E Unit's use in preliminary research as required into furniture and equipment contracts.

60% Construction Documents

SCA / F&E Unit Responsibility
- Following submission by Design Team of 60% construction documents SCA/F&E Unit, should submit a draft list of furniture items indicating which will comply with this credit to the SCA Design Manager so Design Team may make any necessary modifications to construction documents.

100% Construction Documents
No credit submittal.

Construction

SCA F&E Unit Responsibility
- Submit a list of F&E items indicating which items meet the VOC requirements of this credit.

Architect's Responsibility
- Submit Certification Form with completed information for this credit.

References

- LEED for Schools 2009 Credit IEQ 4.5 Low-Emitting Materials, Furniture & Furnishings
- WA-CHPS Credit Q 3.2 Low-Emitting Materials, Furniture & Furnishings
- SCA Design Requirements
 - None
- SCA Standard Specifications
 - None
- SCA Standard Details
 - None
- Other References
 - Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers by the California Department of Health Services.
 - Greenguard Product Emission Standard For Children & Schools:
 - http://www.greenguard.com
Intent

Reduce the quantity of indoor air contaminants that are odorous, irritating and/or harmful to the comfort and well-being of installers and occupants.

This credit is optional and may only be pursued with SCA direction/permission.

Requirements

All gypsum board, insulation, acoustical ceiling systems and wall covering installed in the building interior must meet the testing and product requirement of the California Department of Health Services Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1. If product cut sheets states that the product meets CA section 01350 criteria, then it is compliant.

Best Practices and Implementation

The SCA Standard Specifications specify low-emitting ceiling and wall systems complying with this credits requirements. New York State DEC does not currently include VOC limits for low-emitting materials for ceiling and wall systems.

Design teams must review Contractor’s construction submittals and include VOC information on the Low-Emitting Material - Summary Form.

Design team must specify compliant products in project specifications and educate contractors about the credit requirements. Documentation of compliance with the credit requirements should be made a contractual obligation in contract language for contractors and sub-contractors. The general contractor needs to understand the standards and credit requirements in order to know how to verify that products are compliant. This information can usually be found on the product data sheet.

Scientific Certification System - Indoor Advantage Gold, GreenGuide Environmental Institute and websites provide list of materials and associated products for compliance with criteria adopted in California for Indoor Air Emissions of Volatile Organic Compounds (VOCs) with potential health effects. The program uses a small-scale chamber test protocol and incorporates VOC emissions criteria developed by California Department of Health Services, which are widely known as CA Section 01350.
DESIGN DEVELOPMENT

ARCHITECT’S RESPONSIBILITY
- Submit a narrative summarizing the design approach for credit compliance and identifying applicable SCA standards to be incorporated into the design documents.

60% CONSTRUCTION DOCUMENTS

ARCHITECT’S RESPONSIBILITY
- Incorporate credit requirements in construction documents.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

ARCHITECT’S RESPONSIBILITY
- Submit Low-Emitting Materials - Summary Form based on documentation submitted by Contractor.
- Submit Certification Form with completed information for this credit.

OTHER REFERENCES
- California Department of Public Health Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers, Version 1.1

REFERENCES

- LEED for Schools 2009 IEQ Credit 4.6 Low-Emitting Materials, Ceiling and Wall Systems
- SCA DESIGN REQUIREMENTS
 - None
- SCA STANDARD SPECIFICATIONS
 - G01600 Material and Equipment
 - 09260 Gypsum Board Assemblies
 - 09510 Acoustical Ceilings
- SCA STANDARD DETAILS
 - None
A5.1 THE SCHOOL BUILDING AS A TEACHING TOOL

<table>
<thead>
<tr>
<th>INTENT</th>
<th>REQUIREMENTS</th>
<th>BEST PRACTICES AND IMPLEMENTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduce students to the environmental design features of the building.</td>
<td>Develop architectural elements or curriculum to engage students with the environmental design features of the building.</td>
<td>Design Teams should list this credit as being pursued on the Schematic Submission Green Schools Rating System Project Checklist only if the SCA has provided direction to that effect.</td>
</tr>
</tbody>
</table>

Using the building as an educational tool may include a combination of architectural and programatic elements. Architectural elements might include special signage, display boxes, view panels of building elements. Programmatic elements might include a monograph appropriate for students or provision of background information and training for teachers.

As coordinated with the school administration, students may participate in projects that educate each other and visitors about the environmental design features.

Design Teams pursuing this credit may review the USGBC credit interpretation ruling on education programs for LEED-NC projects.
DESIGN DEVELOPMENT

ARCHITECTS RESPONSIBILITY
- For projects where the SCA has agreed that this credit may be pursued, indicate specific conditions that make this credit achievable. Include a summary of the design approach and a description of the sustainable design measures to be used to support educational curriculum on the environment.

60% CONSTRUCTION DOCUMENTS

ARCHITECTS RESPONSIBILITY
- Incorporate requirements in construction documents.

100% CONSTRUCTION DOCUMENTS

No credit submittal.

CONSTRUCTION

ARCHITECTS RESPONSIBILITY
- Submit Certification Form with completed information for this credit.
- Submit updated documentation as necessary.
- Submit sustainable curriculum to be implemented for the project.

REFERENCES

LEED for Schools 2009 ID Credit 3
School as a Teaching Tool

WA-CHPS Extra Credit 2.1
Environmental Education

SCA DESIGN REQUIREMENTS

None

SCA STANDARD SPECIFICATIONS

None

SCA STANDARD DETAILS

None

OTHER REFERENCES

USGBC Credit Interpretation Ruling on Educational Program
usgbc.org
FORMS FOR DESIGN TEAM
(ALL FORMS DOWNLOADABLE FROM SCA WEB SITE)

Project Checklist

Credit Compliance Narrative

S1.4: Development Density & Community Connectivity Form

S6.1R Light Pollution Reduction Form A - Site Lumen Calculation Form

S6.1R Light Pollution Reduction Form B - Lighting Power Density (LPD)

W2.1R, W2.2, W2.3 and W2.4: Water Use Reduction Form

E1.1 - SCA Total Building Commissioning Construction Document Verification Matrix

E2.2: Refrigerant Impact Form

M1.2, M1.3 and M1.4: Building Reuse Form

M2.1R and M2.2: Recycled Content - Summary Form

M2.3 and M2.4: Regional Content - Summary Form

Q3.1R: Low Emitting Materials - Summary Form A Adhesives and Sealants

Q3.2R, Q 3.3R and Q3.4R: Low Emitting Materials Summary Form B - Paints, Coatings, Carpets, Composite Wood and Agrifiber Products

Q7.1, Q7.2 and Q7.3: Daylight Calculation Form

Q7.4: Views Calculation Form

Design Team Certification - Design Phase

Design Team Certification - Construction Phase

REFERENCE FORMS
(ALL FORMS DOWNLOADABLE FROM SCA WEB SITE)

M1.5R, M1.6 and M1.7: Construction Waste Management Form

M2.1R, M2.2, M2.3R and M2.4: Contractors Sustainable Materials Form

M2.1R, M2.2, M2.3R and M2.4: Contractors Sustainable Materials - Tracking Form

Commissioning Certification Form

Contractor Certification Form

LL86/05 Reporting Form
Site

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>Point Value</th>
<th>Required If Feasible</th>
<th>Indicate Pursuit</th>
<th>Credit Req'd - Confirm Pursuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Pr 1 Construction Activity Pollution Prevention</td>
<td>12</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 2 Environmental Site Assessment</td>
<td>12</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 3 Brownfield Redevelopment</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 4 Alternative Transportation, Public Transportation Access</td>
<td>20</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 5 Site Development, Protect or Restore Habitat</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 6 Stormwater Design, Quality Control</td>
<td>15</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 7 Heat Island Effect, Roof</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Pr 8 Light Pollution Reduction</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>Point Value</th>
<th>Required If Feasible</th>
<th>Indicate Pursuit</th>
<th>Credit Req'd - Confirm Pursuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>WE Pr 1 Water Efficient Landscaping, Reduce by 50%</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE Pr 2 Water Efficient Landscaping, No Potable Water Use or Irrigation</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE Pr 3 Minimum Water Use Reduction, 20% Reduction</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE Pr 4 Enhanced Water Use Reduction, 30% Reduction</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WE Pr 5 Enhanced Water Use Reduction, 40% Reduction</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Energy

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>Point Value</th>
<th>Required If Feasible</th>
<th>Indicate Pursuit</th>
<th>Credit Req'd - Confirm Pursuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA Pr 1 Fundamental Commission</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Pr 2 Minimum Energy Performance</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Pr 3 Enhanced Refrigerant Management</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Pr 4 Enhanced Refrigerant Management</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EA Pr 5 Energy Management System Controls, HVAC & H. W. Systems</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>Point Value</th>
<th>Required If Feasible</th>
<th>Indicate Pursuit</th>
<th>Credit Req'd - Confirm Pursuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR Pr 1 Storage & Collection of Recyclables</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Pr 2 Construction Waste Management, Divert 50% from Disposal</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Pr 3 Recycled Content, 10% (post-consumer + ½ pre-consumer)</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Pr 4 Regional Materials, 20% Extracted, Processed & Manufactured</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Pr 5 Wallboard & Roof Deck Products, Mold Resistance</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Pr 6 Low-Mercury Lighting, Reduce Mercury Waste</td>
<td>10</td>
<td>Y</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See Notes on Page 2 of 2
Outdoor Environmental Quality

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ Pr 1 Q 1.1R</td>
<td>Minimum IAQ Performance</td>
<td>NP YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 2 Q 1.1R</td>
<td>Increased Ventilation (included in Q 1.1R credit language)</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 3 Q 1.2R</td>
<td>Air Flow Stations, Outside Air Intakes</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 3.1 Q 2.1R</td>
<td>Construction IAQ Management Plan, During Construction</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 3.2 Q 2.2R</td>
<td>Construction IAQ Management Plan, Before Occupancy</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.1 Q 3.1R</td>
<td>Low-Emitting Materials, Adhesives & Sealants</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.2 Q 3.2R</td>
<td>Low-Emitting Materials, Paints & Coatings</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.3 Q 3.3R</td>
<td>Low-Emitting Materials, Flooring Systems</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.5 Q 3.4R</td>
<td>Low-Emitting Materials, Comp Wood & Agrifiber Products</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 5 Q 4.1R</td>
<td>Indoor Chemical & Pollutant Source Control</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>5.3.5 Q 4.3R</td>
<td>Electric Ignition Stoves</td>
<td>NP YES Indicate Pursuit NO</td>
</tr>
<tr>
<td>6.2.4 Q 4.3R</td>
<td>Provide HEPA Vacuums</td>
<td>NP YES Indicate Pursuit NO</td>
</tr>
</tbody>
</table>

Controlability of Systems

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ 6.1 Q 5.1R</td>
<td>Controlability of Systems, Lighting</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 6.2 Q 5.2R</td>
<td>Controlability of Systems, Thermal Comfort</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
</tbody>
</table>

Thermal Comfort

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ 7.1 Q 6.1R</td>
<td>Thermal Comfort, Comply with ASHRAE 55-2004</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 8.1 Q 7.1</td>
<td>Daylight & Views, Daylight 75% of Classrooms</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 8.2 Q 7.2</td>
<td>Daylight & Views, Daylight for 90% of Classrooms</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 8.3 Q 7.3</td>
<td>Daylight & Views, Daylight for 75% of Other Spaces</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 8.4 Q 7.4</td>
<td>Daylight & Views, Views</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
</tbody>
</table>

Lighting and Views

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEQ 9.1 Q 8.1R</td>
<td>Minimum Acoustical Performance</td>
<td>NP YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 9.2 Q 8.2R</td>
<td>Enhanced Acoustical Performance & Sound for Special Spaces</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
</tbody>
</table>

Acoustics

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCA Q 8.3</td>
<td>Acoustic Windows</td>
<td>NP YES Indicate Pursuit NO</td>
</tr>
</tbody>
</table>

Regional

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 17</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 1.1 R 1.1</td>
<td>Regionally Defined Credit Achieved</td>
<td>Blank YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>RP 1.2 R 1.2</td>
<td>Regionally Defined Credit Achieved</td>
<td>Blank YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>RP 1.3 R 1.3</td>
<td>Regionally Defined Credit Achieved</td>
<td>Blank YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>RP 1.4 R 1.4</td>
<td>Regionally Defined Credit Achieved</td>
<td>Blank YES Credit Req’d - Confirm Pursuit</td>
</tr>
</tbody>
</table>

Additional Credits

<table>
<thead>
<tr>
<th>Credit Name</th>
<th>0 of Total Points</th>
<th>Points: 0 out of 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 2 A 1.1R</td>
<td>LEED® Accredited Professional</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>ID 1 A 1.2</td>
<td>Innovation or Exemplary Performance</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>ID 1 A 1.3</td>
<td>Innovation or Exemplary Performance</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>SS 7.1 A 2.1</td>
<td>Heat Island Effect, Non-Roof</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>SS 6.1 A 2.2</td>
<td>Stormwater Design, Quantity Control</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>EA 1 A 3.1</td>
<td>Optimize Energy Performance</td>
<td>15 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>EA 2 A 3.2</td>
<td>On-Site Renewable Energy</td>
<td>7 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.5 A 4.1</td>
<td>Low-Emitting Materials, Furniture and Furnishings</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>IEQ 4.6 A 4.2</td>
<td>Low-Emitting Materials, Ceiling and Wall Systems</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
<tr>
<td>ID 3 A 5.1</td>
<td>The School Building as a Teaching Tool</td>
<td>1 YES Credit Req’d - Confirm Pursuit</td>
</tr>
</tbody>
</table>

SCA Credit Name

Letter prefix indicates credit section (S, W, E, M, Q, R, A)
First number indicates the category within the section
Second number indicates the specific credit within the section category
Suffix "R" is added for credits that are required of all projects
Projects may only pursue optional "Additional" section credits with permission from SCA unless otherwise noted
During GSG submission phases, enter anticipated design and construction credits, keeping the Checklist current
A maximum total value of four (4) points is allowed between these six low-emitting material credits (Q3.1, 3.2, 3.3, 3.4; A5.1, 5.2)
RPC incentive regional credits as indicated. If the referenced credit is achieved, then the associated RPC can be claimed.

NYC GSG: Requires that all credits be attempted and proof through calculation for those which are not-feasible.
Credit Compliance Narratives

Directions:

- Eleven of the Site narratives are submitted with the Schematic Submission as indicated below. All other required narratives are submitted with the Design Development submittal.

- Design Teams must submit narratives for all credits in the Site, Water, Energy, Materials and Indoor Environmental Quality sections. For the Additional Credits, all projects must include a narrative for credit A1.1R. Narratives for the other Additional Credits should only be provided when it has been determined with the SCA that the additional credit(s) are to be pursued for this project. Include explanation of why the additional credit is to be pursued on this project. For those credits subject to Regional Priority Credit, indicate whether based on the zip code that the credit is eligible to obtain the additional point.

- Narratives should summarize the design approach to credit compliance and identify the specific SCA standards (standard specifications and design requirements) to be incorporated into the design documents. Include any specific information requested under the "Credit Submittals" heading from the second page of credit text. Provide explanations and calculations where appropriate for credits that are determined to be "not feasible" for this project.

Site Credits

Site Selection
S 1.1R Construction Activity Pollution Prevention

S 1.2R Site Selection NARRATIVE AT SCHEMATIC SUBM.

S 1.3 Sustainable Site & Building Layout NARRATIVE AT SCHEMATIC SUBM.

S 1.4 Development Density & Community Connectivity NARRATIVE AT SCHEMATIC SUBM.

S 1.5R Joint Use of Facilities, Community Access NARRATIVE AT SCHEMATIC SUBM.

S 1.6R Site Assessment NARRATIVE AT SCHEMATIC SUBM.
Brownfield Redevelopment

Alternative Transportation, Public Transportation Access

Alternative Transportation, Bicycle Storage & Changing Rooms

Alternative Transportation, Fuel-Efficient Vehicles/Parking

Site Development, Protect or Restore Habitat

Site Development, Maximize Open Space

Stormwater Design

Stormwater Design, Quality Control

Heat Island Effect

Heat Island Effect, Roof

Light Pollution Reduction

Water Efficient Landscaping, Reduce by 50%

Water Efficient Landscaping, No Potable Water Use or Irrigation

Water Use Reduction, 20% Reduction

Water Use Reduction, 30% Reduction

Water Use Reduction, 35% Reduction

Water Use Reduction, 40% Reduction
Energy
Commissioning
E 1.1R Fundamental Commissioning

E 1.2R Enhanced Commissioning

Refrigerant Management
E 2.1R Fundamental Refrigerant Management

E 2.2 Enhanced Refrigerant Management

Verification
E 3.1R Measurement & Verification

E 3.2R Energy Management System Controls, HVAC and Hot Water

Energy Efficiency
E 4.1R Minimum Energy Performance

HVAC Optimization
E 4.2R HVAC System Sizing, Avoid Oversizing

Power
E 5.1R Green Power

Materials Credits
Efficient Material Use
M 1.1R Storage & Collection of Recyclables

M 1.2 Building Reuse, Maintain 75% of Existing Walls, Floors & Roof

M 1.3 Building Reuse, Maintain 95% of Existing Walls, Floors & Roof

M 1.4 Building Reuse, Maintain 50% of Interior Non-Structural Elements

M 1.5R Construction Waste Management, Divert 50% from Disposal
M 1.6 Construction Waste Management, Divert 75% from Disposal

M 1.7 Construction Waste Management, Divert 95% from Disposal

Sustainable Materials

M 2.1R Recycled Content, 10% (post-consumer + ½ pre-consumer)

M 2.2 Recycled Content, 20% (post-consumer + ½ pre-consumer)

M 2.3 Regional Materials, 10% Extracted, Processed & Manufactured Regionally

M 2.4 Regional Materials, 20% Extracted, Processed & Manufactured Regionally

M 2.5R Wallboard & Roof Deck Products, Mold Resistance

M 2.6R Low-Mercury Lighting, Reduce Mercury Waste

Indoor Environmental Quality Credits

IAQ Post-occupancy

Q 1.1R Minimum IAQ Performance & Increased Ventilation

Q 1.2R Outdoor Air Delivery Monitoring

IAQ Pre-occupancy

Q 2.1R Construction IAQ Management Plan, During Construction

Q 2.2R Construction IAQ Management Plan, Before Occupancy

Low-Emitting Materials

Q 3.1R Low-Emitting Materials, Adhesives & Sealants

Q 3.2R Low-Emitting Materials, Paints & Coatings

Q 3.3R Low-Emitting Materials, Flooring Systems

Q 3.4R Low-Emitting Materials, Comp Wood & Agrifiber Products
Pollution Source Control
Q 4.1R Indoor Chemical & Pollutant Source Control

Q 4.2R Electric Ignition Stoves

Q 4.3R Provide HEPA Vacuums

Controllability of Systems
Q 5.1R Controllability of Systems, Lighting

Q 5.2R Controllability of Systems, Thermal Comfort

Thermal Comfort
Q 6.1R Thermal Comfort, Design

Lighting and Views
Q 7.1 Daylight & Views, Daylight 75% of Classrooms

Q 7.2 Daylight & Views, Daylight 90% of Classrooms

Q 7.3 Daylight & Views, Daylight for 75% of Other Spaces

Q 7.4 Daylight & Views, Views

Q 7.5 Visual Performance, Artificial Indirect Lighting

Acoustics
Q 8.1R Minimum Acoustical Performance

Q 8.2 Enhanced Acoustical Performance & Sound Isolation for Special Spaces

Q 8.3 Acoustic Windows

Additional Credits

Required Support
A 1.1R LEED® Accredited Professional

Optional Site Impact
A 2.1 Heat Island Effect, Non-Roof
A 2.2 Stormwater Design, Quantity Control

Optional - Energy
A 3.1 Optimize Energy Performance

A 3.2 Renewable Energy

Optional - IEQ
A 5.1 Low-Emitting Materials, Furniture and Furnishings

A 5.2 Low-Emitting Materials, Ceiling and Wall Systems

Optional - Education
A 6.1 The School Building as a Teaching Tool
Option 1 - Community Connectivity (Submit site plan with basic service locations noted matching table numbering and separate plan verifying dwelling units per acre)

<table>
<thead>
<tr>
<th>Plan Key Identification</th>
<th>Business Name within 1/2 mile (2,640 feet) radius and accessible by pedestrian access</th>
<th>Service Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Option 2 - Development Density

Density radius within which lots must be included = 3 \times \sqrt{\text{(site area in sf)}}

<table>
<thead>
<tr>
<th>Sequential Number Assigned to Lot</th>
<th>Block No.</th>
<th>Lot No.</th>
<th>Lot Area in SF</th>
<th>Lot Area in Acres</th>
<th>Gross Building Square Footage per lot*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Site:</td>
<td>1000</td>
<td>1</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>10,000</td>
<td>0.23</td>
<td>15,000</td>
<td></td>
</tr>
</tbody>
</table>

Combined Total Lot Area in SF 70,000
Combined Total Lot Area in Acres 1.61
Combined Total Building Gross Area in SF 105,000

Development Density = \frac{\text{SF/Acre of Gross Bulding Square Footage}}{65,340}

If number above is greater than or equal to 60,000 sf/acre, then project complies using this criteria.

Note: Include project site in development density calculations

* Lot Area and Building Gross Area information may be obtained through oasisnyc.net. This site is a project of the New York City Open Accessible Space Information System Cooperative (OASIS).
Light Pollution Reduction - Form A

Exterior Light Tresspass - Site Lumen Calculation

Credit S6.1R

Project:
- []

Address:
- []

Architect:
- []

LLW:
- []

Preparer:
- []

Date:
- []

Telephone:
- []

Site Lumen Calculation

<table>
<thead>
<tr>
<th>Fixture Type</th>
<th>Quantity of Installed Luminaries</th>
<th>Initial Lamp Lumens per Luminaire</th>
<th>Total Lamp Lumens</th>
<th>Initial Lamp Lumens above 90 degrees from Nadir</th>
<th>Total Lamp Lumens above 90 degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>lt-1a</td>
<td>4</td>
<td>5,000</td>
<td>20,000</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>lt-1b</td>
<td>2</td>
<td>5,000</td>
<td>10,000</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>lt-1c</td>
<td>1</td>
<td>5,000</td>
<td>5,000</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>lt-1d</td>
<td>14</td>
<td>5,000</td>
<td>70,000</td>
<td>50</td>
<td>700</td>
</tr>
</tbody>
</table>

[insert rows as necessary]

Total Lamp Lumens: 105,000

Total Lamp Lumens above 90 degrees: 850

Percentage of Site Lamp Lumens above 90 degrees
If Percentage of Site Lamp Lumens above 90 degrees is less than or equal to the value referenced for the select site LZ then site complies.

- LZ1: 0%, LZ2: 2%, LZ3:5%, LZ4: 10%

Yes or No

05/01/09
Light Pollution Reduction - Form B

Light Power Density Calculations - Exterior Lighting Only

Credit S6.1R Applicable for ASHRAE 90.1-2004 & 2007

<table>
<thead>
<tr>
<th>Project:</th>
<th>Test Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>30-30 Thomson Ave., LIC, NY 11101</td>
</tr>
<tr>
<td>LLW:</td>
<td>65432</td>
</tr>
<tr>
<td>Date:</td>
<td>August 11, 2011</td>
</tr>
<tr>
<td>Consulting Firm:</td>
<td>Consulting Engineers</td>
</tr>
<tr>
<td>Preparer:</td>
<td>Electrical Engineer</td>
</tr>
<tr>
<td>Telephone:</td>
<td>718 472 8561</td>
</tr>
</tbody>
</table>

1. **Exterior Building Lighting Power Allowance (Tradable Lighting Applications) - BASELINE BUDGET**

 Designer Note: Building Entrance, Canopy & Overhang and Other Exterior Lighting ONLY (No Façade Lighting to be included)

 Use this table to calculate the lighting power allowance for exterior lighting in tradable applications. Identify each of the tradable lighting applications as listed in Table 9.4.5 that occur in the project, select the application type using the drop down menu (e.g. building entrance with canopy), the allowance is automatically calculated, enter the linear feet or square feet as appropriate, the allowance times the area or length is automatically calculated, and entered in the Power Allowance column and summed in the cell shaded blue.

 Table 9.4.5 - Select Your Application (Apply 90.1-2004 Standard Description)

 - **Allowance (W/ft or W/sf)**
 - **Area or Length (ft or sf)**
 - **Main school entrance**: Bldg Entrances: Main entrances (W/ft of door width) 30.00 30
 - **Means of egress (N and S towers)**: Bldg Entrances: Other doors (W/ft of door width) 20.00 20
 - **Side Yard**: Bldg Grounds: Special feature areas (W/sf) 0.20 5000
 - **Front sidewalk**: Bldg Grounds: Walkways = or > than 10 feet wide (W/sf) 0.20 200
 - **(N and S) walkways**: Bldg Grounds: Walkways < than 10 feet wide (W/lin-ft) 1.00 400

 ** Tradable BASELINE Allowance =**
 ** Tradable BASELINE Allowance (less 20% per SCA req'ts) =**

2. **Exterior Building Lighting Power Allowance (NON-Tradable Lighting Applications) - BASELINE BUDGET**

 Designer Note: Other Exterior Lighting ONLY (e.g. Façade Lighting to be included)

 This table is identical to the previous table except that the non-tradable lighting applications, as listed in Table 9.4.5, are to be entered here.

 Table 9.4.5 - Select Your Application (Apply 90.1-2004 Standard Description)

 - **Allowance (W/ft or W/sf)**
 - **Area or Length (ft or sf)**
 - **Z33 Parking Lot**: Uncovered areas (W/sf) 1.25 5000
 - **Z34 School Façade**: Bldg Façade 0.2 W/ft2 for ea. illuminated wall/surface -OR-
 <blank - unused>
 <blank - unused>
 <blank - unused>

 ** NON-Tradable BASELINE Allowance =**
 ** NON-Tradable BASELINE Allowance (less 20% per SCA req'ts) =**

3. **Additional Unrestricted Exterior Lighting Power Allowance**

 Designer Note: This automatically adds 5% to the BASELINE

 The total power allowances from the preceding two tables are automatically manipulated to calculate the additional unrestricted exterior power allowance. This value may be applied in the Exterior Lighting Compliance Test below.

 [Tradable BASELINE Budget] (Watts) + [Non-Tradable BASELINE Budget] (Watts) x 0.05
4. Exterior Building Lighting Power (Tradable Lighting Applications) - DESIGN CASE

Designer Note: Building Entrance, Canopy & Overhang and Other Exterior Lighting ONLY (No Façade Lighting to be included)

Use this table to list the lighting equipment used for exterior lighting used for tradable applications as identified in Table 9.4.5.

<table>
<thead>
<tr>
<th>Fixture ID</th>
<th>Luminaire Description (including number of lamp/fixture, Watt/lamp, type of ballast, type of fixture)</th>
<th># of Luminaire</th>
<th>W/Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z02</td>
<td>High Pressure Sodium</td>
<td>6</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tridable DESIGN CASE =

5. Exterior Building Lighting Power (NON-Tradable Lighting Applications) - DESIGN CASE

Designer Note: Other Exterior Lighting ONLY (e.g. Façade Lighting to be included)

This table is similar to the preceding table except that the lighting application needs to be identified along with its corresponding luminaires because each of the non-tradable applications must comply individually.

<table>
<thead>
<tr>
<th>Fixture ID</th>
<th>Luminaire Description (including number of lamp/fixture, Watt/lamp, type of ballast, type of fixture)</th>
<th># of Luminaire</th>
<th>W/Luminaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z33</td>
<td></td>
<td>4</td>
<td>500</td>
</tr>
<tr>
<td>Z34</td>
<td></td>
<td>2</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NON-Tradable DESIGN CASE =

6. Exterior Lighting Compliance Test

Designer Note: The compliance form is filled in automatically based on your inputs above. If any portion of this compliance test fails, adjust the design accordingly to pass this test.

1) Each of the conditions in this table must be met for exterior lighting systems to comply. The tradable exterior lighting applications comply if the connected lighting power is greater than the total allowance. All or a portion (or none) of the five percent additional allowance can be used to achieve compliance.

2) Connected lighting power for each of the non-tradable applications must be no greater than their corresponding allowances. Here additional allowance from the five percent can be applied to achieve compliance. The total of all additional allowances used for both the tradable and non-tradable applications must be no greater than the total Unrestricted Exterior Lighting Power Allowance.

Compliance test 1

| Tradable Power Allowance (Watts) + Additional Unrestricted Lighting Power (Watts) Must be ≥ than Tradable Connected Lighting Power (Watts) |
|---|---|---|
| 2192 | 379.6 | Pass | 1500 |

Compliance test 2

NON-Tradable Application	NON-Tradable Power Allowance (Watts) + Additional Unrestricted Lighting Power (Watts) Must be ≥ than NON-Tradable Connected Lighting Power (Watts)			
Z33	6250	312.5	Pass	2000
Z34	500	25	FAIL	800

Compliance test 3

| Total Additional Allowance Applied (Sum) (Watts) Must be ≤ than Additional Unrestricted Lighting Power Allowance (Watts) |
|---|---|
| 337.5 | Pass | 379.6 |
School in Full Operation

BASE CASE

<table>
<thead>
<tr>
<th>Base Case</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration [Flush]</th>
<th>Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Water Closet male 3-12</td>
<td>100%</td>
<td>1.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Conventional Water Closet male 3-12</td>
<td>100%</td>
<td>2.00</td>
<td>1.0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Conventional Water Closet female 3-12</td>
<td>100%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Conventional Water Closet male PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Conventional Water Closet female PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Conventional Water Closet Adult</td>
<td>N/A</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Base Case</th>
<th>Flow Fixture Type</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration</th>
<th>Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Lavatory (Student)</td>
<td>3</td>
<td>0.25 g/cycle</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Conventional Lavatory (Adult)</td>
<td>3</td>
<td>0.25 g/cycle</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Shower</td>
<td>0.1</td>
<td>2.5 gpm</td>
<td>300 sec</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Food Service Hand Sink</td>
<td>4</td>
<td>0.25 g/cycle</td>
<td>1 cycle</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

DESIGN CASE

<table>
<thead>
<tr>
<th>Design Case</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration</th>
<th>Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Efficiency Water Closet male 3-12</td>
<td>100%</td>
<td>1.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>High Efficiency Urinal male 3-12</td>
<td>100%</td>
<td>2.00</td>
<td>0.125</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>High Efficiency Water Closet female 3-12</td>
<td>100%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>High Efficiency Water Closet male PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>High Efficiency Water Closet female PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>High Efficiency Water Closet Adult</td>
<td>N/A</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Case</th>
<th>Flow Fixture Type</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration</th>
<th>Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerated Lavatory with metering device (Student)</td>
<td>3</td>
<td>0.125 g/cycle</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Aerated Lavatory with metering device (Adult)</td>
<td>3</td>
<td>0.125 g/cycle</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Low Flow Shower</td>
<td>0.1</td>
<td>1.6 gpm</td>
<td>300 sec</td>
<td>N/A</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Food Service Hand Sink</td>
<td>4</td>
<td>0.125 g/cycle</td>
<td>1 cycle</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Figures in shaded boxes are based on EPA 1992 as amended in 2005 with revisions as per LEED 2009 (base case), SCA standards (design case) or are calculated by this spreadsheet. No design team revision required.
2. Spreadsheet will calculate occupant users for water closets and urinals for design and base cases based on figures entered by Design Team for "Occupant Users" for "Conventional Lavatory" for students and adults, along with % of Student Population by Grade". Distribution of male and female "Occupant Users" are based on assumption of 50-50 ratio of male and female.
3. Methodology to determine student population: Use unadjusted capacity from POR
4. Methodology to determine adult population: Follow DR 2.3.3.-Bicycle Racks
5. Figure entered by Design Team for "Occupant Users" for Food Service Hand Sinks is based on 1 FTE for each 100 students. Student population based on unadjusted capacity from POR is to be entered. (Minimum of 2 kitchen staff is required).
6. For "Summer Operation", occupant users is anticipated to be 30% of "Full Operation Population". If program is known to be different, actual summer population should be entered.
7. For "Annual Days of Summer Operation", revise anticipated number of days for regular summer operation, excluding weekends and days when school is closed, if program is known to be different than the default value of 30.
8. Modernization projects should include the actual fixture flow rate of fixtures to remain in the design case calculations and indicate assumptions about percentage of occupant users who will use those existing fixtures to remain.
9. Percentage of Student Population by Grade should be based on number of students in classrooms with toilets located within the classrooms. Dedicated classroom toilets would be applicable to PK and K and to first and second grade classrooms as indicated in the POR. Single user toilets are typically provided for staff use. If first and second grade don't have toilets, include population in 3-12.
10. For typical IS and HS, percentage of occupant users in the PK-2 row should be equal to zero.
11. For typical PS and PS/IS, percentage of occupant users in the PK-2 row should be based on occupants users in PK-2 grade classrooms that have dedicated toilets.
Summer Operation

BASE CASE

<table>
<thead>
<tr>
<th>Base Case</th>
<th>Flush Fixture Type</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration [Flush]</th>
<th>POR Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conventional Water Closet male 3-12</td>
<td>100%</td>
<td>1.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conventional Urinal male 3-12</td>
<td>100%</td>
<td>2.00</td>
<td>1.0</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conventional Water Closet female 3-12</td>
<td>100%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conventional Water Closet male PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conventional Water Closet female PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Conventional Water Closet Adult</td>
<td>N/A</td>
<td>3.00</td>
<td>1.6</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

DESIGN CASE

<table>
<thead>
<tr>
<th>Design Case</th>
<th>Flush Fixture Type</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration [Flush]</th>
<th>POR Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High Efficiency Water Closet male 3-12</td>
<td>100%</td>
<td>1.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Urinal male 3-12</td>
<td>100%</td>
<td>2.00</td>
<td>0.125</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Water Closet female 3-12</td>
<td>100%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Water Closet male PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Water Closet female PK-2</td>
<td>0%</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>High Efficiency Water Closet Adult</td>
<td>N/A</td>
<td>3.00</td>
<td>1.28</td>
<td>1</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design Case</th>
<th>Flow Fixture Type</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration [Flush]</th>
<th>POR Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aerated Lavatory with metering device (Student)</td>
<td>3.00</td>
<td>0.125</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Aerated Lavatory with metering device (Adult)</td>
<td>3.00</td>
<td>0.125</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Low Flow Shower</td>
<td>0.1</td>
<td>1.0</td>
<td>300 sec</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Food Service Hand Sink</td>
<td>4</td>
<td>0.125</td>
<td>1 cycle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Base Case "Summer Operation" Daily Volume [Gal]
0.0

Annual Days Summer Operation
30

Base Case Annual "Summer Operation" Total Volume [Gal]
0.0

DESIGN CASE

<table>
<thead>
<tr>
<th>Design Case</th>
<th>Flow Fixture Type</th>
<th>% of Student Population by Grade</th>
<th>Daily Uses</th>
<th>Flow Rate [gpf]</th>
<th>Duration [Flush]</th>
<th>POR Student Population</th>
<th>Occupant Users</th>
<th>Sewage Generated [Gal]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aerated Lavatory with metering device (Student)</td>
<td>3.00</td>
<td>0.125</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Aerated Lavatory with metering device (Adult)</td>
<td>3.00</td>
<td>0.125</td>
<td>1 cycle</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Low Flow Shower</td>
<td>0.1</td>
<td>1.0</td>
<td>300 sec</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Food Service Hand Sink</td>
<td>4</td>
<td>0.125</td>
<td>1 cycle</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Design Case "Summer Operation" Daily Volume [Gal]
0.0

Annual Days Summer Operation
30

Design Case "Summer Operation" Total Volume [Gal]
0.0

Sub-Total: Water Use Reduction for "Summer Operation"
0%

Total Base Case "School In Full Operation & Summer Operation" [Gal]
0.0

Total Design Case "School In Full Operation & Summer Operation" [Gal]
0.0

Total Water Use Reduction
0%
SCA Total Building Commissioning Construction Document Verification Matrix

(Name of Project)

TECHNICAL SPECIFICATION

CONTRACT REQUIREMENTS

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION</th>
<th>SHOP DWGS & SUBMITTALS</th>
<th>SUBSTITUTIONS</th>
<th>FID QA/QC INSPECTION SIGN-OFFS</th>
<th>CONTROLLED INSPECTION & NCN ISSUES COMPLETED</th>
<th>TEST VERIFICATIONS COMPLETED 120 HR. OPS; TCC/FMSI & OTHER FUNCT. PERF. TESTS</th>
<th>WARRANTIES & GUARANTEES PROVIDED</th>
<th>INDEXED O/M MANUALS RECEIVED</th>
<th>CUSTODIAN / STAFF TRAINING COMPLETED</th>
<th>CODE INSPECTION SIGN-OFFS: PLUMBING; F/A; DOB; DOT; ETC.</th>
<th>CX. PACKAGE PREPARED FOR DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01352</td>
<td>Sustainability Requirements</td>
<td></td>
</tr>
<tr>
<td>S01370</td>
<td>Environmental Protection Procedure</td>
<td></td>
</tr>
<tr>
<td>S01524</td>
<td>Construction Waste Management</td>
<td></td>
</tr>
<tr>
<td>S01550</td>
<td>Indoor Air Quality (IAQ) Requirements</td>
<td></td>
</tr>
<tr>
<td>S01560</td>
<td>Installation Sequence of Finish Materials</td>
<td></td>
</tr>
<tr>
<td>S01650</td>
<td>Facility Start-Up, Demonstration & Training</td>
<td></td>
</tr>
<tr>
<td>S01660</td>
<td>Supplementary Commissioning Requirements</td>
<td></td>
</tr>
<tr>
<td>S01730</td>
<td>Systems Operation and Maintenance Manuals</td>
<td></td>
</tr>
</tbody>
</table>

Division 1 - General and Supplementary Requirements

- **S01352** Sustainability Requirements
- **S01370** Environmental Protection Procedure
- **S01524** Construction Waste Management
- **S01550** Indoor Air Quality (IAQ) Requirements
- **S01560** Installation Sequence of Finish Materials
- **S01650** Facility Start-Up, Demonstration & Training
- **S01660** Supplementary Commissioning Requirements
- **S01730** Systems Operation and Maintenance Manuals

Division 2 - Sitework

- **02060** Building Demolition
- **02070** Selective Removals & Demolition
- **02081** Asbestos Abatement
- **02082** PCB-Containing Caulk Removal Work
- **02085** Exterior Paint Removal
- **02091** Storage, Handling, Transportation and Disposal Of Petroleum Contaminated and/or Hazardous Wastes
- **02100** Site Preparation
- **02200** Earthwork
- **02200A** Earthwork (Flow-through Turf AF)
- **02200B** Earthwork (Float Drain Turf / Natural Grass AF)
<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>CONTRACT REQUIREMENTS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>02215 Controlled Low Strength Material</td>
<td>Shop Dwgs & Submittals Approved</td>
<td></td>
</tr>
<tr>
<td>02250 Foundation and Other Change Adjustments</td>
<td>Substitutions Approved</td>
<td></td>
</tr>
<tr>
<td>02360 Driven Pipe-Pile Foundations</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>02511 Asphaltic Concrete Paving</td>
<td>Controlled Inspection & NCN Issues Completed</td>
<td></td>
</tr>
<tr>
<td>02512 Porous Asphalt Paving</td>
<td>Test Verifications Completed 120 Hr. Ops; TCC/FMSI & other Fund. Perf. Tests</td>
<td></td>
</tr>
<tr>
<td>02513 Sidewalk and Street Paving</td>
<td>Warranties & Guarantees Provided</td>
<td></td>
</tr>
<tr>
<td>02514 Porous Asphalt Pavement Test Strip</td>
<td>Indexed O/M Manuals Rec’d.</td>
<td></td>
</tr>
<tr>
<td>02515 Unit Pavers</td>
<td>Custodian / Staff Training Completed</td>
<td></td>
</tr>
<tr>
<td>02516 Exposed Porous Asphalt Paving</td>
<td>Code Inspection Sign-offs, Plumbing; F/A; DOB; DOT; etc.</td>
<td></td>
</tr>
<tr>
<td>02531 Resilient Surfacing</td>
<td>Custodian Prepared for DSF</td>
<td></td>
</tr>
<tr>
<td>02532 Resilient Surface - Porous Base</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02533 Colored Athletic Wearing Surface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02541 Synthetic Turf - TPE Infill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02580 Track / Court / Playground Markings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02711 Wall Subdrainage Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02721 Trench Drains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02722 Precast Conc CB/Detention Basins/MH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02723 Storm Drainage Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02724 Underdrain System - Asphalt Paving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02725 Underdrain System for Skinned Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02831 Chain Link Fences and Gates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02860 Early Childhood Playground Equipment</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION SECTIONS

<table>
<thead>
<tr>
<th>Shop Dwgs & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed</th>
<th>120 Hr. Ops; TCC/FMSI & other Funct. Perf. Tests</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O/M Manuals Rec’d.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs</th>
<th>Plumbing; F/A; DOB; DOT; etc.</th>
<th>Cx. Package Prepared for DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>02862</td>
<td>Outdoor Game Equipment</td>
<td></td>
</tr>
<tr>
<td>02870</td>
<td>Site and Street Furnishings</td>
<td></td>
</tr>
<tr>
<td>02900</td>
<td>Landscaping</td>
<td></td>
</tr>
</tbody>
</table>

Division 3 - Concrete

03100	Concrete Formwork											
03200	Concrete Reinforcement											
03200A	Concrete Reinforcement - (Epoxy)											
03300	Cast-In-Place Concrete											
03610	Grouting											
03733	Concrete Repair Work											
03740	Migrating Corrosion Inhibitor											

Division 4 - Masonry Systems:

04200	Unit Masonry											
04250	Terra Cotta											
04270	Glass Unit Masonry											
04420	Exterior Cut Stone											
04435	Cast Stone											
04510	Masonry Cleaning											
04510A	Masonry Cleaning (SHPO)											
04520	Masonry Restoration											
04520A	Masonry Restoration (SHPO)											
04700	Simulated Masonry											

3 of 16

1/05/09
SCA Total Building Commissioning Construction Document Verification Matrix

Contract Requirements

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>SHOP DWG & SUBMITTALS APPROVED</th>
<th>HOURS OF OPERATIONS, TCC/FMSI & OTHER FUNCT. PERF. TESTS</th>
<th>CODE INSPECTION SIGN-OFFS</th>
<th>CUSTODIAN/STAFF TRAINING COMPLETED</th>
<th>INDEXED O&M MANUALS RECEIVED</th>
<th>WRITTEN & OTHER GUARANTEES PROVIDED</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 5 - Metals:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05120 Structural Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05170 Support System For Suspended Ceilings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05210 Open Web Steel Joist, K-Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05220 Longspan Steel Joists, LH-Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05230 Steel Joist Girders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05300 Metal Deck</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05500 Metal Fabrications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05580 Sheet Metal Fabrications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05700 Ornamental Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05710 Steel Stairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05810 Prefabricated Expansion Joint Covers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division 6 - Wood & Plastics:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06100 Rough Carpentry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06200 Finish Carpentry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06410 Custom Casework</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCA Total Building Commissioning Construction Document Verification Matrix

CONTRACT REQUIREMENTS

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>Shop Dwgs & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed</th>
<th>120 Hr. Ops; TCC/FMSI & other Funct. Perf. Tests</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O/M Manuals Rec’d.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs</th>
<th>Plumbing; F/A; DOB; DOT; etc.</th>
<th>Cx. Package Prepared for DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 7 - Thermal & Moisture Protection</td>
<td></td>
</tr>
<tr>
<td>07110</td>
<td>Sheet Membrane Waterproofing</td>
<td></td>
</tr>
<tr>
<td>07115</td>
<td>Sheet Membrane Waterproofing FDNS</td>
<td></td>
</tr>
<tr>
<td>07120</td>
<td>Fluid- Applied Waterproofing Plazas</td>
<td></td>
</tr>
<tr>
<td>07147</td>
<td>Crystalline Waterproofing</td>
<td></td>
</tr>
<tr>
<td>07150</td>
<td>Chemical Resin Injection Grouting</td>
<td></td>
</tr>
<tr>
<td>07160</td>
<td>Bituminous Damproofing</td>
<td></td>
</tr>
<tr>
<td>07211</td>
<td>Perimeter Foundation Insulation</td>
<td></td>
</tr>
<tr>
<td>07212</td>
<td>Miscellaneous Building Insulation</td>
<td></td>
</tr>
<tr>
<td>07250</td>
<td>Sprayed Fire Resistant Materials</td>
<td></td>
</tr>
<tr>
<td>07260</td>
<td>Intumescent Fireproofing</td>
<td></td>
</tr>
<tr>
<td>07270</td>
<td>Firestopping/Smoke Seals</td>
<td></td>
</tr>
<tr>
<td>07272</td>
<td>Fluid- Applied Membrane Air Barrier, Vapor Retarding</td>
<td></td>
</tr>
<tr>
<td>07314</td>
<td>Slate Shingles</td>
<td></td>
</tr>
<tr>
<td>07553</td>
<td>Hybrid Built-Up/SBS Modified Bituminous Roofing</td>
<td></td>
</tr>
<tr>
<td>07560</td>
<td>Fluid-applied Protected Membrane Roofing</td>
<td></td>
</tr>
<tr>
<td>07561</td>
<td>Fluid-applied Protected Membrane Roofing (Planted Type I)</td>
<td></td>
</tr>
<tr>
<td>07600</td>
<td>Flashing and Sheet Metal</td>
<td></td>
</tr>
<tr>
<td>07610</td>
<td>Sheet Metal Roofing</td>
<td></td>
</tr>
<tr>
<td>07720</td>
<td>Roof Accessories</td>
<td></td>
</tr>
<tr>
<td>07820</td>
<td>Metal Framed Skylights</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICAL SPECIFICATION SECTIONS

- **07110**: Sheet Membrane Waterproofing
- **07115**: Sheet Membrane Waterproofing FDNS
- **07120**: Fluid-Applied Waterproofing Plazas
- **07147**: Crystalline Waterproofing
- **07150**: Chemical Resin Injection Grouting
- **07160**: Bituminous Damproofing
- **07211**: Perimeter Foundation Insulation
- **07212**: Miscellaneous Building Insulation
- **07250**: Sprayed Fire Resistant Materials
- **07260**: Intumescent Fireproofing
- **07270**: Firestopping/Smoke Seals
- **07272**: Fluid-Applied Membrane Air Barrier, Vapor Retarding
- **07314**: Slate Shingles
- **07553**: Hybrid Built-Up/SBS Modified Bituminous Roofing
- **07560**: Fluid-applied Protected Membrane Roofing
- **07561**: Fluid-applied Protected Membrane Roofing (Planted Type I)
- **07600**: Flashing and Sheet Metal
- **07610**: Sheet Metal Roofing
- **07720**: Roof Accessories
- **07820**: Metal Framed Skylights
Technical Specification Sections

<table>
<thead>
<tr>
<th>Shop Dwgs & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed</th>
<th>120 Hr. Ops; TCC/FMSI & other Funct. Perf. Tests</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O&M Manuals Rec’d.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs</th>
<th>Plumbing; F/A; DOB; DOT; etc.</th>
<th>O&M Custodian / Staff Training Completed for DSF</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>07900 Joint Sealers</td>
<td></td>
</tr>
</tbody>
</table>

Division 8 - Doors & Windows

08110 Steel Doors and Frames												
08210 Wood Doors												
08220 Fiberglass Reinforced Polyester Doors												
08305 Access Doors												
08330 Coiling Doors, Grilles and Shutters												
08510 Stl. Windows - Projected/Casement/Pivot/DH												
08521 AL. Dbl-Hung Windows - New												
08522 AL. Dbl-Hung Windows - Repl												
08524 Aluminum Projected Windows												
08610 Replacement Wood Windows												
08662 Security Screens/Barriers												
08710 Finish Hardware												
08730 Thresholds, Weatherstripping and Seals												
08800 Miscellaneous Glazing												
08920 Aluminum Curtain Walls												
SCA Total Building Commissioning Construction Document Verification Matrix

(Name of Project)

TECHNICAL SPECIFICATION SECTIONS

<table>
<thead>
<tr>
<th>Shop Dwg's & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O/M Manuals Rec'd.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs</th>
<th>Plumbing; F/A; DOB; DOT; etc.</th>
<th>Cx. Package Prepared for DSF</th>
</tr>
</thead>
</table>

NOTES
- **(Name of Project)**

Division 9 - Finishes

<table>
<thead>
<tr>
<th>09205</th>
<th>Furring and Lathing</th>
</tr>
</thead>
<tbody>
<tr>
<td>09210</td>
<td>Plaster</td>
</tr>
<tr>
<td>09260</td>
<td>Gypsum Board Assemblies</td>
</tr>
<tr>
<td>09310</td>
<td>Ceramic Tile</td>
</tr>
<tr>
<td>09410</td>
<td>Terrazzo - Portland Cement</td>
</tr>
<tr>
<td>09510</td>
<td>Acoustical Ceilings</td>
</tr>
<tr>
<td>09590</td>
<td>Wood Flooring</td>
</tr>
<tr>
<td>09626</td>
<td>Resilient Athletic Flooring</td>
</tr>
<tr>
<td>09650</td>
<td>Resilient Flooring</td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
</tr>
<tr>
<td>09705</td>
<td>Resinous Flooring</td>
</tr>
<tr>
<td>09800</td>
<td>Special Coatings</td>
</tr>
<tr>
<td>09860</td>
<td>Graffiti Resistant Coatings</td>
</tr>
<tr>
<td>09900</td>
<td>Painting</td>
</tr>
</tbody>
</table>

- **(Name of Project)**
SCA Total Building Commissioning Construction Document Verification Matrix

Name of Project

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>CONTRACT REQUIREMENTS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shop Dwgs & Submittals Approved</td>
<td>FID QA/QC Inspection Sign-Offs</td>
</tr>
<tr>
<td>Division 10 - Specialties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10100 Visual Display Boards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10151 Toilet Compartments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10160 Factory-Painted Steel Toilet Compartments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10185 Plastic Shower and Dressing Compartments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10214 Stationary Metal Wall Louvers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10270 Access Flooring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10350 Flagpole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10400 Identifying Devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10415 Bulletin Boards, Display Boards, Display Cabinets and Cases</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10505 Metal Lockers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10522 Fire Extinguishers and Cabinets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10605 Wire Mesh Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10652 Folding Panel Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10655 Accordion Folding Partitions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10675 Metal Storage Shelving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10720 Window Guards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10810 Toilet and Bath Accessories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10830 Mirrors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10840 Grab Bars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT REQUIREMENTS</td>
<td>TECHNOICAL SPECIFICATION</td>
<td>SECTIONS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Shop Dwgs & Submittals Approved</td>
<td>11050 Library Equipment</td>
<td>Division 11 - Equipment</td>
</tr>
<tr>
<td>Approvd</td>
<td>11061 Auditorium Window Curtains, Projection Screen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11172 Waste Handling Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11400 Food Service Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11450 Domestic Type Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11460 Unit Kitchen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11480 Gymnasium Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11500 Unit Laboratory Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11600 Laboratory Equipment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Division 12 - Furnishings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12302 Manufactured Wood</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12345 Casework</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12485 Soapstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12485 Soapstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12485 Soapstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TECHNICAL SPECIFICATION SECTIONS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>13120</td>
<td>Steel Bleachers</td>
</tr>
<tr>
<td>13031</td>
<td>Walk-In Trash Refrigerator</td>
</tr>
</tbody>
</table>

Division 14 - Conveying Systems

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>14120</td>
<td>Electric Dumbwaiter</td>
</tr>
<tr>
<td>14211</td>
<td>Geared Traction Passenger Elevators</td>
</tr>
<tr>
<td>14240</td>
<td>Direct-Acting Hydraulic Passenger Elevators</td>
</tr>
<tr>
<td>14250</td>
<td>Dual-Jack Roped Hydraulic Passenger Elevators</td>
</tr>
<tr>
<td>14260</td>
<td>Counterweighted Roped Hydraulic Passenger Elevators</td>
</tr>
<tr>
<td>14315</td>
<td>Hydraulic Sidewalk Elevators</td>
</tr>
<tr>
<td>14316</td>
<td>Geared Traction Sidewalk Elevators</td>
</tr>
<tr>
<td>14420</td>
<td>Hydraulic Vertical Wheelchair Lift</td>
</tr>
<tr>
<td>14510</td>
<td>Escalators</td>
</tr>
</tbody>
</table>

Division 15 - Mechanical (Fire Protection)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>15303</td>
<td>Seismic Controls, Fire Protection Systems</td>
</tr>
<tr>
<td>15330</td>
<td>Sprinkler System</td>
</tr>
<tr>
<td>15331</td>
<td>Dry Standpipe System</td>
</tr>
<tr>
<td>15332</td>
<td>Combination Wet Standpipe/Sprinkler System</td>
</tr>
<tr>
<td>15333</td>
<td>Fire Pumps/Sprinkler Booster Pumps</td>
</tr>
</tbody>
</table>
SCA Total Building Commissioning Construction Document Verification Matrix

(Name of Project)

TECHNICAL SPECIFICATION SECTIONS

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>Shop Dwg & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed</th>
<th>120 Hr. Ops; TCC/FMSI & other Funct. Perf. Tests</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O/M Manuals Rec’d.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs, Plumbing; F/A; DOB; DOT; etc.</th>
<th>Cx. Package Prepared for DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division 15 - Mechanical (Plumbing & Drainage)</td>
<td></td>
</tr>
<tr>
<td>15403</td>
<td></td>
</tr>
<tr>
<td>Vibration Isolation and Seismic Controls</td>
<td></td>
</tr>
<tr>
<td>15410</td>
<td></td>
</tr>
<tr>
<td>Plumbing Piping</td>
<td></td>
</tr>
<tr>
<td>15411</td>
<td></td>
</tr>
<tr>
<td>Hangers and Supports</td>
<td></td>
</tr>
<tr>
<td>15412</td>
<td></td>
</tr>
<tr>
<td>Valves</td>
<td></td>
</tr>
<tr>
<td>15413</td>
<td></td>
</tr>
<tr>
<td>Insulation (P & D)</td>
<td></td>
</tr>
<tr>
<td>15414</td>
<td></td>
</tr>
<tr>
<td>Tests</td>
<td></td>
</tr>
<tr>
<td>15415</td>
<td></td>
</tr>
<tr>
<td>Drainage</td>
<td></td>
</tr>
<tr>
<td>15416</td>
<td></td>
</tr>
<tr>
<td>Gas Piping System</td>
<td></td>
</tr>
<tr>
<td>15417</td>
<td></td>
</tr>
<tr>
<td>Cold Water Supply</td>
<td></td>
</tr>
<tr>
<td>15418</td>
<td></td>
</tr>
<tr>
<td>Hot Water Supply</td>
<td></td>
</tr>
<tr>
<td>15431</td>
<td></td>
</tr>
<tr>
<td>Tags, Charts and Identification</td>
<td></td>
</tr>
<tr>
<td>15432</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>15440</td>
<td></td>
</tr>
<tr>
<td>Plumbing Fixtures</td>
<td></td>
</tr>
<tr>
<td>15451</td>
<td></td>
</tr>
<tr>
<td>Water Heaters</td>
<td></td>
</tr>
<tr>
<td>15453</td>
<td></td>
</tr>
<tr>
<td>Pumping Apparatus and Tanks</td>
<td></td>
</tr>
<tr>
<td>Division 15 - Mechanical (HVAC)</td>
<td></td>
</tr>
<tr>
<td>15501</td>
<td></td>
</tr>
<tr>
<td>Basic Heating, Ventilating and Air Cond. Req.</td>
<td></td>
</tr>
<tr>
<td>15502</td>
<td></td>
</tr>
<tr>
<td>HVAC Identification</td>
<td></td>
</tr>
<tr>
<td>15503</td>
<td></td>
</tr>
<tr>
<td>Vibration Isolation and Seismic Controls, HVAC Systems</td>
<td></td>
</tr>
<tr>
<td>15504</td>
<td></td>
</tr>
<tr>
<td>Vibration Isolation</td>
<td></td>
</tr>
<tr>
<td>15510</td>
<td></td>
</tr>
<tr>
<td>HVAC Piping</td>
<td></td>
</tr>
<tr>
<td>15511</td>
<td></td>
</tr>
<tr>
<td>Valves (HVAC)</td>
<td></td>
</tr>
</tbody>
</table>

NOTES
SCA Total Building Commissioning Construction Document Verification Matrix

(Name of Project)

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>SHOP DWGS & SUBMITTALS APPROVED</th>
<th>SUBSTITUTIONS APPROVED</th>
<th>FID QA/QC INSPECTION SIGN-OFFS</th>
<th>CONTROLLED INSPECTION & NCN ISSUES COMPLETED</th>
<th>TEST VERIFICATIONS COMPLETED</th>
<th>120 HR. OPE; TCC/FMSI & OTHER FUNCT. PERF. TESTS</th>
<th>WARRANTIES & GUARANTEES PROVIDED</th>
<th>INDEXED O/M MANUALS RECEIVED</th>
<th>CUSTODIAN / STAFF TRAINING COMPLETED</th>
<th>CODE INSPECTION SIGN-OFFS; PLUMBING; F/A; DOB; DOT; ETC.</th>
<th>CX. PACKAGE PREPARED FOR DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>15512 Piping Insulation (HVAC)</td>
<td></td>
</tr>
<tr>
<td>15513 Equipment Insulation (HVAC)</td>
<td></td>
</tr>
<tr>
<td>15514 Ductwork Insulation</td>
<td></td>
</tr>
<tr>
<td>15515 Hydronic Specialties</td>
<td></td>
</tr>
<tr>
<td>15516 Water Treatment for Steam Boilers</td>
<td></td>
</tr>
<tr>
<td>15517 Water Treatment for Hydronic Systems</td>
<td></td>
</tr>
<tr>
<td>15525 Steam and Condensate Specialties</td>
<td></td>
</tr>
<tr>
<td>15540 HVAC Pumps</td>
<td></td>
</tr>
<tr>
<td>15555 Fire-Tube Boilers (Steam)</td>
<td></td>
</tr>
<tr>
<td>15556 Cast-Iron Boilers</td>
<td></td>
</tr>
<tr>
<td>15557 Fire-Tube Boilers (Hot Water)</td>
<td></td>
</tr>
<tr>
<td>15559 Flexible-Water Tube Boilers (Steam)</td>
<td></td>
</tr>
<tr>
<td>15560 Flexible-Water Tube Boilers (Hot Water)</td>
<td></td>
</tr>
<tr>
<td>15565 Hot Water Condensing Boilers</td>
<td></td>
</tr>
<tr>
<td>15570 Boiler Accessories</td>
<td></td>
</tr>
<tr>
<td>15575 Breaching, Chimney and Stacks</td>
<td></td>
</tr>
<tr>
<td>15580 Feedwater Equipment</td>
<td></td>
</tr>
<tr>
<td>15590 Emergency Generator System - Accessories</td>
<td></td>
</tr>
<tr>
<td>15592 Fuel Burning/Pumping Equipment (For Steam Boilers)</td>
<td></td>
</tr>
<tr>
<td>15593 Fuel Burning/Pumping Equipment (For Hot Water Boilers)</td>
<td></td>
</tr>
<tr>
<td>15594 Fuel Storage Equipment</td>
<td></td>
</tr>
</tbody>
</table>

12 of 16

1/05/09
SCA Total Building Commissioning Construction Document Verification Matrix

Name of Project

<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>SHOP DWGS & SUBMITTALS APPROVED</th>
<th>SUBSTITUTIONS APPROVED</th>
<th>FID QA/QC INSPECTION & SIGN-OFFS</th>
<th>CONTROLLED INSPECTION & NCN ISSUES COMPLETED</th>
<th>TEST VERIFICATIONS COMPLETED</th>
<th>120 H. OPS; TCO/FMSI & OTHER FUNCT. PERF. TESTS</th>
<th>WARRANTIES & GUARANTEES PROVIDED</th>
<th>INDEXED O/M MANUALS REC'D</th>
<th>CUSTODIAN / STAFF TRAINING COMPLETED</th>
<th>CODE INSPECTION SIGN-OFFS</th>
<th>PLUMBING; FA; DOB; DOT; ETC.</th>
<th>CX. PACKAGE PREPARED FOR DSF</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>15596 Natural Gas Leak Detection Equipment</td>
<td></td>
</tr>
<tr>
<td>15610 Gas-Fired Duct Furnaces</td>
<td></td>
</tr>
<tr>
<td>15650 Split Air Cooled Chillers</td>
<td></td>
</tr>
<tr>
<td>15660 Packaged Modular Outdoor Chiller</td>
<td></td>
</tr>
<tr>
<td>15670 Plate Heat Exchangers</td>
<td></td>
</tr>
<tr>
<td>15756 Converters</td>
<td></td>
</tr>
<tr>
<td>15781 Packaged Heating and Cooling Units</td>
<td></td>
</tr>
<tr>
<td>15783 Split Heat Pump System</td>
<td></td>
</tr>
<tr>
<td>15792 Coils</td>
<td></td>
</tr>
<tr>
<td>15835 Convectors</td>
<td></td>
</tr>
<tr>
<td>15836 Unit Heaters/Cabinet Heaters</td>
<td></td>
</tr>
<tr>
<td>15838 Fan Coil Units</td>
<td></td>
</tr>
<tr>
<td>15852 Air Handling Units</td>
<td></td>
</tr>
<tr>
<td>15853 Custom Packaged Rooftop Heating and Cooling Units (Variable Air Volume System)</td>
<td></td>
</tr>
<tr>
<td>15854 Custom Packaged Rooftop Heating and Cooling Units (Constant Volume System)</td>
<td></td>
</tr>
<tr>
<td>15855 Commercial Packaged Rooftop Heating and Cooling Units</td>
<td></td>
</tr>
<tr>
<td>15857 Unit Ventilator</td>
<td></td>
</tr>
<tr>
<td>15858 Windows Air Conditioners</td>
<td></td>
</tr>
<tr>
<td>15860 Centrifugal Fans</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

(*Name of Project*)
SCA Total Building Commissioning Construction Document Verification Matrix

Name of Project

Technical Specification Sections

<table>
<thead>
<tr>
<th>Appendix Numbers</th>
<th>Section Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>15864</td>
<td>Propeller Fans</td>
</tr>
<tr>
<td>15865</td>
<td>Axial Flow Fans</td>
</tr>
<tr>
<td>15872</td>
<td>Gravity Roof Ventilator</td>
</tr>
<tr>
<td>15885</td>
<td>Air Filters</td>
</tr>
<tr>
<td>15891</td>
<td>Metal Ductwork</td>
</tr>
<tr>
<td>15910</td>
<td>Duct Accessories</td>
</tr>
<tr>
<td>15915</td>
<td>Dampers</td>
</tr>
<tr>
<td>15930</td>
<td>Variable Air Terminals</td>
</tr>
<tr>
<td>15931</td>
<td>Fan-Powered Variable Air Volume (VAV) Terminal Units</td>
</tr>
<tr>
<td>15940</td>
<td>Air Outlets and Inlets</td>
</tr>
<tr>
<td>15970</td>
<td>LonWorks BMS/DDC W/School Console</td>
</tr>
<tr>
<td>15971</td>
<td>TC System (Lon Works DDC Only)</td>
</tr>
<tr>
<td>15972</td>
<td>Temperature Control System (Pneumatic)</td>
</tr>
<tr>
<td>15973</td>
<td>Facility Management Systems Integration</td>
</tr>
<tr>
<td>15980</td>
<td>Thermometers and Gauges</td>
</tr>
<tr>
<td>15985</td>
<td>Sequence of Operations</td>
</tr>
<tr>
<td>15992</td>
<td>Cleaning and Testing</td>
</tr>
<tr>
<td>15993</td>
<td>Balancing of Systems</td>
</tr>
</tbody>
</table>

Contract Requirements

<table>
<thead>
<tr>
<th>Shop Dwgs & Submittals Approved</th>
<th>Substitutions Approved</th>
<th>FID QA/QC Inspection Sign-Offs</th>
<th>Controlled Inspection & NCN Issues Completed</th>
<th>Test Verifications Completed 120 Hr. Ops; TCC/FMSI & other Funct. Perf. Tests</th>
<th>Warranties & Guarantees Provided</th>
<th>Indexed O/M Manuals Rec’d.</th>
<th>Custodian / Staff Training Completed</th>
<th>Code Inspection Sign-offs Plumbing; F/A; DOB; DOT; etc.</th>
<th>Cx. Package Prepared for DSF</th>
</tr>
</thead>
</table>

Notes

(Your comments and observations go here)
TECHNICAL SPECIFICATION SECTIONS

<table>
<thead>
<tr>
<th>Div. 16 - Electrical</th>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>SHOP DWGS & SUBMITTALS APPROVED</th>
<th>SUBSTITUTIONS APPROVED</th>
<th>FID QA/QC INSPECTION & SIGN-OFFS</th>
<th>CONTROLLED INSPECTION & NCN ISSUES COMPLETED</th>
<th>TEST VERIFICATIONS COMPLETED</th>
<th>120 HR. OPS; TCC/FMSI & OTHER FUNCT. PERF. TESTS</th>
<th>WARRANTIES & GUARANTEES PROVIDED</th>
<th>INDEXED O/M MANUALS REC'D.</th>
<th>CUSTODIAN / STAFF TRAINING COMPLETED</th>
<th>CODE INSPECTION SIGN-OFFS</th>
<th>PLUMBING; F/A; DOB; DOT; ETC.</th>
<th>CX. PACKAGE PREPARED FOR DSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>16120</td>
<td>Wiring Systems</td>
<td></td>
</tr>
<tr>
<td>16130</td>
<td>Raceways, Fittings, Supporting Devices, Boxes and Accessories</td>
<td></td>
</tr>
<tr>
<td>16140</td>
<td>Wiring Devices</td>
<td></td>
</tr>
<tr>
<td>16145</td>
<td>Lighting Control Devices</td>
<td></td>
</tr>
<tr>
<td>16231</td>
<td>Emergency Generator System</td>
<td></td>
</tr>
<tr>
<td>16289</td>
<td>Transient Voltage Surge Suppression</td>
<td></td>
</tr>
<tr>
<td>16289</td>
<td>Service Entrance Equipment</td>
<td></td>
</tr>
<tr>
<td>16425</td>
<td>Switchboards</td>
<td></td>
</tr>
<tr>
<td>16441</td>
<td>Enclosed Switches</td>
<td></td>
</tr>
<tr>
<td>16450</td>
<td>Grounding and Bonding</td>
<td></td>
</tr>
<tr>
<td>16460</td>
<td>Transformers</td>
<td></td>
</tr>
<tr>
<td>16470</td>
<td>Panelboards</td>
<td></td>
</tr>
<tr>
<td>16471</td>
<td>Auditorium and Television Studio Dimming System</td>
<td></td>
</tr>
<tr>
<td>16472</td>
<td>Science Laboratory Power Units</td>
<td></td>
</tr>
<tr>
<td>16475</td>
<td>Overcurrent Protective Devices, Circuit Breakers and Fuses</td>
<td></td>
</tr>
<tr>
<td>16480</td>
<td>Motors, Motor Control Centers, Starters, and Control Equipment</td>
<td></td>
</tr>
<tr>
<td>16500</td>
<td>Interior Building Lighting</td>
<td></td>
</tr>
<tr>
<td>16501</td>
<td>Lamps, Ballasts and Accessories</td>
<td></td>
</tr>
<tr>
<td>16503</td>
<td>Vibration Isolation And Seismic Controls, Electrical Systems</td>
<td></td>
</tr>
<tr>
<td>16520</td>
<td>Illuminated Exit Sign and Emergency Lighting Fixtures</td>
<td></td>
</tr>
<tr>
<td>16530</td>
<td>Site/Security Lighting</td>
<td></td>
</tr>
<tr>
<td>16670</td>
<td>Lightning Protection</td>
<td></td>
</tr>
</tbody>
</table>

NOTES

15 of 16 1/05/09
<table>
<thead>
<tr>
<th>TECHNICAL SPECIFICATION SECTIONS</th>
<th>CONTRACT REQUIREMENTS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shop Dwgs & Submittals Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Substitutions Approved</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16701 Auxiliary Signal Systems</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16720 Fire Detection and Alarm System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16721 City Fire Alarm System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16722 Stand-Alone Carbon Monoxide Alarms</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16724 Intrusion Alarm System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16725 Telephone and Intercom Cabling System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16726 Intercom System for Holding Areas and Elevators</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16727 Data Cabling System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16728 Fiber Optic Cabling System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16770 Sound, Intercom and Teacher Activated Security System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16771 Projection System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16780 TV Distribution System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16783 Internet Protocol Digital Video Surveillance (IPDVS) Cabling System (Capacity Projects - New Construction)</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16791 Self-Corrective Clock System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16792 Wireless Clock System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
<tr>
<td>16855 Heat Trace Cable System</td>
<td>FID QA/QC Inspection Sign-Offs</td>
<td></td>
</tr>
</tbody>
</table>
The matrix below is to assist in calculating the refrigerant impact using the following calculation:

\[\frac{\sum (LCGWP + LCODP \times 100,000) \times Q_{\text{unit}}}{Q_{\text{total}}} \] is less than or equal to 100

The weighted average for multiple pieces of HVAC&R equipment can be calculated as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>HVAC&R equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerant</td>
<td>Ozone-depletion and Global Warming Potentials (100-yr values)</td>
</tr>
<tr>
<td>GWP</td>
<td>Hydrochlorofluorocarbons</td>
</tr>
<tr>
<td>ODP</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>Common Building Application</td>
<td>Natural Refrigerants</td>
</tr>
</tbody>
</table>

Definitions:
- **LCGWP:** Lifecycle Direct Global Warming Potential (lbCFC11.Ton-Year) = \([GWPr \times (Lr \times \text{Life} + Mr) \times Rc] / \text{Life}\)
- **LCODP:** Lifecycle Ozone Depletion Potential (lbCFC11.Ton-Year) = \([ODPr \times (Lr \times \text{Life} + Mr) \times Rc] / \text{Life}\)
- **Q unit:** Cooling capacity of an individual HVAC or refrigeration unit in tons.
- **Rc:** ACTUAL Refrigerant Charge (0.5 to 5.0 lbs of refrigerant per ton of mechanical-cooling capacity).
- **Life:** Equipment Life (based on equipment type, 15 years unless otherwise demonstrated).
- **Lr:** Refrigerant Leakage Rate (0.5% to 2%; default of 2% unless otherwise demonstrated).
- **Mr:** End-of-life Refrigerant Loss (2% to 10%; default of 10% unless otherwise demonstrated).
- **Q total:** Total mechanical-cooling capacity for a given type of HVAC or refrigeration unit on the project.
- **RAI:** Refrigerant Atmospheric Impact

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>ODP</th>
<th>GWP</th>
<th>Common Building Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11</td>
<td>1.0</td>
<td>4,680</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>CFC-12</td>
<td>1.0</td>
<td>10,720</td>
<td>Refrigerators, chillers</td>
</tr>
<tr>
<td>CFC-114</td>
<td>0.94</td>
<td>9,800</td>
<td>Centrifugal chillers</td>
</tr>
<tr>
<td>CFC-500</td>
<td>0.605</td>
<td>7,900</td>
<td>Centrifugal chillers, humidifiers</td>
</tr>
<tr>
<td>CFC-502</td>
<td>0.221</td>
<td>4,800</td>
<td>Low-temperature refrigeration</td>
</tr>
<tr>
<td>HCFC-22</td>
<td>0.04</td>
<td>1,780</td>
<td>Air conditioning, chillers,</td>
</tr>
<tr>
<td>HCFC-123</td>
<td>0.02</td>
<td>76</td>
<td>HCFC-11 replacement</td>
</tr>
<tr>
<td>HFC-23</td>
<td>~0</td>
<td>12,240</td>
<td>Ultra-low-temperature refrigeration</td>
</tr>
<tr>
<td>HFC-134a</td>
<td>~0</td>
<td>1,320</td>
<td>CFC-12 or HCFC-22 replacement</td>
</tr>
<tr>
<td>HFC-245fa</td>
<td>~0</td>
<td>1,020</td>
<td>Insulation agent, centrifugal chillers</td>
</tr>
<tr>
<td>HFC-404A</td>
<td>~0</td>
<td>3,900</td>
<td>Low-temperature refrigeration</td>
</tr>
<tr>
<td>HFC-407C</td>
<td>~0</td>
<td>1,700</td>
<td>Low-temperature refrigeration</td>
</tr>
<tr>
<td>HFC-410A</td>
<td>~0</td>
<td>1,890</td>
<td>HCFC-22 replacement</td>
</tr>
<tr>
<td>HFC-507A</td>
<td>~0</td>
<td>3,900</td>
<td>Air conditioning</td>
</tr>
<tr>
<td>Carbon Dioxide (CO2)</td>
<td>0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Ammonia (NH3)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>10 Year Life</th>
<th>15 Year Life</th>
<th>20 Year Life</th>
<th>23 Year Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Room or window AC & heat pumps)</td>
<td>(Unitary, split and packaged AC and heat pumps)</td>
<td>(Reciprocating compressors & chillers)</td>
<td>(Centrifugal, Screw & Absorption Chillers)</td>
<td></td>
</tr>
<tr>
<td>R-22</td>
<td>10.73</td>
<td>14.09</td>
<td>17.32</td>
<td>18.91</td>
</tr>
<tr>
<td>R-123</td>
<td>16.01</td>
<td>19.34</td>
<td>22.34</td>
<td>23.99</td>
</tr>
<tr>
<td>R-134a</td>
<td>26.52</td>
<td>30.46</td>
<td>33.34</td>
<td>34.94</td>
</tr>
<tr>
<td>R-245fa</td>
<td>28.26</td>
<td>32.20</td>
<td>33.92</td>
<td>35.50</td>
</tr>
<tr>
<td>R-407c</td>
<td>19.45</td>
<td>22.80</td>
<td>25.13</td>
<td>26.64</td>
</tr>
<tr>
<td>R-410a</td>
<td>17.76</td>
<td>20.08</td>
<td>22.31</td>
<td>23.61</td>
</tr>
</tbody>
</table>

05/01/09
Building Reuse Calculation

Credit M1.2, M1.3 and M1.4

NYG Green Schools Rating System

Project:
Address:
Engineer:
Preparer:
Date:
Telephone:

Table 1: Credit M1.2 and M1.3 - Building Structure / Envelope Reuse Calculation

M1.2 - Projects that reuse/divert from landfill 75% or more of the existing structure achieve this credit.
M1.3 - Projects that reuse/divert from landfill 95% or more of the existing structure achieve this credit.

<table>
<thead>
<tr>
<th>Structure / Envelope Element</th>
<th>Existing Area (SF)</th>
<th>Existing / Reused Area (SF)</th>
<th>Percentage Reused (%)</th>
<th>Weight of Material in lbs*</th>
<th>Source of Weight Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation / Slab on Grade</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2nd Floor Deck</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1st Floor Interior Structural Walls</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2nd Floor Interior Structural Walls</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Roof Deck</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>North Exterior Wall (excl. windows)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>East Exterior Wall (excl. windows)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>West Exterior (excl. windows)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>South Exterior (excl. windows)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Total Area Calculation includes both existing materials to remain and existing materials to be reused.

Table 2: Credit M1.4 - Interior Non-Structural Reuse Calculation

Projects that reuse/divert from landfill 50% or more of interior non-structural elements achieve this credit.

<table>
<thead>
<tr>
<th>Interior Non-Structural Element</th>
<th>Total Area (SF)</th>
<th>Existing / Reused Area (SF)</th>
<th>Percentage Reused (%)</th>
<th>Weight of Material in lbs*</th>
<th>Source of Weight Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gypsum Board Wall Partitions - Full Height</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gypsum Board Wall Partitions - Partial Height</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Masonry partitions, non-structural</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Carpeting</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Resilient Flooring</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ceramic Tile</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Suspended Ceiling systems</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gypsum Board Ceilings</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Interior Doors (Wood)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Interior Windows / Sidelights</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Interior Doors (Metal)</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Interior Casework / cabinetry</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Interior Non-Structural Elements includes all materials to be reused which do not satisfy the Structural/Envelope Element requirement.

Assumption

- Weight of materials assumptions may be taken from Architectural Graphic Standards or other established source.

Below are a selection of materials weight assumptions from Architectural Graphic Standards:

- **4" brick:** 40 lbs per square foot
- **6" light weight CMU:** 31 lbs per square foot
- **8" light weight CMU:** 35 lbs per square foot
- **Hardwood Flooring:** 4 lbs per square foot
- **Concrete Floor/Roof:** light weight 6 lbs per square foot per inch of slab
- **Built-up Roofing:** 6.5 lbs per square foot
- **Metal Deck:** 2.2 lbs per square foot

05/01/09
RECYCLED CONTENT - SUMMARY FORM
Credit M2.1R and M2.2

NYC Green Schools Rating System

Project: _____________________________ Architect: _____________________________
Address: ___________________________ Preparer: ______________________________
LLW #: __________ Design #: __________ Telephone: ___________________________
Date: ________________________________

Contractors Total Construction Cost for CSI Divisions 2-10: $1,000
Assumed Materials Cost based on 45% of cost above: $450
Recycled Materials Content Target (10% of the cost of Materials): $45

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Manufacturer</th>
<th>Material Cost (no Labor & Equip.)</th>
<th>Percentage Post Consumer* by weight</th>
<th>Percentage Pre-Consumer** by weight</th>
<th>Cost of Complying Material</th>
<th>Recycled Content Information Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td>1%</td>
<td>1%</td>
<td>$15</td>
<td></td>
</tr>
</tbody>
</table>

Total Cost of Complying Material $300

Confirm that Total Cost of Complying Materials is greater than or equal to Project's Recycled Materials Content Target: Yes or No

Definitions:
* Post-Consumer Recycled Content: Material or finished product that has served its intended consumer use and has been discarded by consumer.

** Pre-Consumer Recycled Content: Recovered industrial and manufacturing materials diverted from municipal solid waste for the purpose of collection and recycling.

Notes:
1. Recycled content for concrete - provide cost for cementitious materials and percentage of cementitious materials that are recycled content.
2. Recycled content for steel products - where it is not possible to determine recycled content - use default assumption of 25% post-consumer recycled content

05/01/09
Confirm that Total Cost of Complying Materials is greater than or equal to Project's Regional Materials Content Target: Yes or No

Definitions:

Regional Materials: Regionally manufactured materials that have their origin within 500 miles of the project site. These would included products that are regionally mined, harvested or re-used (including those salvaged from the site).

Notes:

1. Regional content for concrete provide combined cost for all concrete materials, and distance information requested.
2. Regional content for materials with various points of extraction all within the 500-mile radius list single item with the greatest distance.
LOW EMITTING MATERIALS - SUMMARY FORM A

Adhesives and Sealants

Credit Q 3.1R

NYC Green Schools Rating System

Project Information
- **Architect:**
- **Preparer:**
- **LLW #:**
- **Design #:**
- **Telephone:**
- **Date:**

Adhesives

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer's Name</th>
<th>Product Name</th>
<th>Product's VOC Level [g/L less water]</th>
<th>VOC Limit [g/L less water]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indoor Carpet Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carpet Pad Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Flooring Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubber Floor Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subfloor Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceramic Tile Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCT & Asphalt Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drywall & Panel Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cove Base Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multipurpose Construction Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Glazing Adhesives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specialty Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVC Welding</td>
<td></td>
<td></td>
<td></td>
<td>510</td>
</tr>
<tr>
<td>CPVC Welding</td>
<td></td>
<td></td>
<td></td>
<td>490</td>
</tr>
<tr>
<td>ABS Welding</td>
<td></td>
<td></td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>Plastic Cement Welding</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Adhesive Primer for Plastic</td>
<td></td>
<td></td>
<td></td>
<td>550</td>
</tr>
<tr>
<td>Contact Adhesive</td>
<td></td>
<td></td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Special Purpose Contact Adhesive</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
<tr>
<td>Structural Wood Member Adhesive</td>
<td></td>
<td></td>
<td></td>
<td>140</td>
</tr>
<tr>
<td>Sheet Applied Rubber Lining Operation</td>
<td></td>
<td></td>
<td></td>
<td>850</td>
</tr>
<tr>
<td>Top & Trim Adhesive</td>
<td></td>
<td></td>
<td></td>
<td>250</td>
</tr>
</tbody>
</table>

05/01/09
Adhesives

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer’s Name</th>
<th>Product Name</th>
<th>Product’s VOC Level [g/L less water]</th>
<th>VOC Limit [g/L less water]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate Specific Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal to Metal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastic Foams</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porous Material (except wood)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiberglass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substrate Specific Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General purpose mist spray</td>
<td></td>
<td></td>
<td>65% VOCs by wt.</td>
<td></td>
</tr>
<tr>
<td>General purpose web spray</td>
<td></td>
<td></td>
<td>55% VOCs by weight</td>
<td></td>
</tr>
<tr>
<td>Special purpose aerosol adhesives (all types)</td>
<td></td>
<td></td>
<td>70% VOCs by weight</td>
<td></td>
</tr>
</tbody>
</table>

Sealants

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer’s Name</th>
<th>Product Name</th>
<th>Product VOC Level [g/L less water]</th>
<th>VOC Limit [g/L less water]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Nonmembrane Roof</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Roadway</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Single-Ply Roof Membrane</td>
<td></td>
<td></td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>Architectural Non Porous</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Architectural Porous</td>
<td></td>
<td></td>
<td>775</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>750</td>
<td></td>
</tr>
</tbody>
</table>
Paints and Coatings

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer's Name</th>
<th>Product Name</th>
<th>Product's VOC Level [g/L less water]</th>
<th>VOC Limit [g/L less water]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural paints</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flats</td>
<td></td>
<td></td>
<td>50 g / L</td>
<td></td>
</tr>
<tr>
<td>Non-Flats</td>
<td></td>
<td></td>
<td>150 g / L</td>
<td></td>
</tr>
<tr>
<td>Anti-corrosive, anti-rust paints</td>
<td></td>
<td></td>
<td>250 g / L</td>
<td></td>
</tr>
<tr>
<td>Clear wood finishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>varnish</td>
<td></td>
<td></td>
<td>350 g / L</td>
<td></td>
</tr>
<tr>
<td>lacquer</td>
<td></td>
<td></td>
<td>550 g / L</td>
<td></td>
</tr>
<tr>
<td>Floor coatings</td>
<td></td>
<td></td>
<td>100 g / L</td>
<td></td>
</tr>
<tr>
<td>Sealer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>waterproofing sealers</td>
<td></td>
<td></td>
<td>250 g / L</td>
<td></td>
</tr>
<tr>
<td>sanding sealers</td>
<td></td>
<td></td>
<td>275 g / L</td>
<td></td>
</tr>
<tr>
<td>all other sealers</td>
<td></td>
<td></td>
<td>200 g / L</td>
<td></td>
</tr>
<tr>
<td>Stains</td>
<td></td>
<td></td>
<td>250 g / L</td>
<td></td>
</tr>
</tbody>
</table>

Flooring

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer's Name</th>
<th>Product Name</th>
<th>Type of CRI Green Label Plus Documentation Attached</th>
</tr>
</thead>
</table>

Composite Wood & Agrifiber Products

<table>
<thead>
<tr>
<th>Product Use</th>
<th>Manufacturer's Name</th>
<th>Product Name</th>
<th>Documentation of Lack of added Urea Formaldehyde</th>
</tr>
</thead>
</table>

05/01/09
Daylight Calculation Form for Classrooms

Credit Q7.1, Q7.2

Directions

1. It is permissible to exclude areas where tasks would be hindered by the use of daylight. Exceptions on this basis might include computer rooms.
2. Copy additional rows including the formulas as required for each additional room to be included on this form.
3. Enter room number, room name, area of room (excluding built-in closets), Length (L - length of room parallel and adjacent to window), effective window head height, sill height, total width of windows per room/bay, and actual transmittance factor of glazing. Window Area (WA), daylight zone depth (window head height x 2), area of daylight zone, WFR factor, Daylight Zone Factor, and Daylight Area are calculated by formula.
4. Enter Minimum Visible Transmittance Factor. The default value used is to be 0.60, which is the minimum required per the SCA standard specification.
5. Verify/enter actual transmittance for specified glazing. For projects in design, use lowest figure for specified glass.
6. Check that all sub-total figures are included in worksheet cells, summing SF OF AREA BEING EVALUATED FOR DAYLIGHT FACTOR and SF OF AREA THAT ACHIEVES DAYLIGHT FACTOR.
7. The entire room may be considered as a bay if the windows are evenly distributed across the room and meets the daylight zone factor. However, if the room does not meet the daylight zone factor requirement, the room should be broken up to the individual bays to determine if part of the room meets the criteria and contributes to the daylight area in keeping with LEED Credit IEQ 8.1 methodology.
8. Where a soffit/ceiling is lower than the window head height, the head height and daylight zone need to be modified accordingly as per diagram in GSG Credit Q7.1.

Daylight & VIEWS

<table>
<thead>
<tr>
<th>RM #</th>
<th>RM Name</th>
<th>Window Data</th>
<th>Transmittance - VLT</th>
<th>Daylight Zone</th>
<th>WFR Factor</th>
<th>Daylight Zone Factor</th>
<th>Qualifying Daylight Area</th>
<th>Glare Control (Y / N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>Floor Area - FA</td>
<td>Effective Head Hgt</td>
<td>Sill Hgt</td>
<td>Daylight Hgt</td>
<td>Window Width/ Room</td>
<td>Window Area - WA</td>
</tr>
<tr>
<td>BASEMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>ROOM NAME 26 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>24.00</td>
<td>176 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>B02</td>
<td>ROOM NAME 26 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>24.00</td>
<td>176 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>B03</td>
<td>ROOM NAME 26 700 SF</td>
<td>10.00</td>
<td>2.50</td>
<td>7.50</td>
<td>24.00</td>
<td>180 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>B04</td>
<td>ROOM NAME 26 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>24.00</td>
<td>176 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>B05</td>
<td>ROOM NAME 26 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>24.00</td>
<td>176 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>3,500 SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1ST FLOOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>ROOM NAME 26 700 SF</td>
<td>9.66</td>
<td>2.66</td>
<td>7.00</td>
<td>25.00</td>
<td>175 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>102</td>
<td>ROOM NAME 26 700 SF</td>
<td>9.60</td>
<td>2.66</td>
<td>6.94</td>
<td>25.00</td>
<td>174 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>103</td>
<td>ROOM NAME 26 700 SF</td>
<td>9.60</td>
<td>2.66</td>
<td>6.94</td>
<td>7.00</td>
<td>49 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>104</td>
<td>ROOM NAME 26 700 SF</td>
<td>9.60</td>
<td>2.66</td>
<td>6.94</td>
<td>7.00</td>
<td>49 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>105</td>
<td>ROOM NAME 26 700 SF</td>
<td>9.60</td>
<td>2.66</td>
<td>6.94</td>
<td>20.00</td>
<td>139 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>3,500 SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2ND FLOOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>25.00</td>
<td>184 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>202</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>25.00</td>
<td>184 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>203</td>
<td>ROOM NAME 10 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>204</td>
<td>ROOM NAME 10 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>205</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>3,500 SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3RD FLOOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>25.00</td>
<td>184 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>302</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>25.00</td>
<td>184 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>303</td>
<td>ROOM NAME 10 175 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>304</td>
<td>ROOM NAME 10 175 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>305</td>
<td>ROOM NAME 30 700 SF</td>
<td>10.00</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>2975 SF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SF OF AREA BEING EVALUATED FOR DAYLIGHT FACTOR: 13,475 SF

SF OF AREA THAT ACHIEVES DAYLIGHT FACTOR: 6,177 SF

Percentage achieved: 45.8%

Requirement to achieve credit Q7.1 is Daylight in 75% of classroom areas
Requirement to achieve credit Q7.2 is Daylight in 90% of classroom areas
Complies? (Y / N):
Complies? (Y / N): No
<table>
<thead>
<tr>
<th>RM #</th>
<th>RM Name</th>
<th>L</th>
<th>Floor Area - FA</th>
<th>Effective Head Hgt</th>
<th>Sill Hgt</th>
<th>Daylight Hgt</th>
<th>Window Width/ Bay</th>
<th>Window Area - WA</th>
<th>Transmittance - VLT</th>
<th>Actual</th>
<th>Min.</th>
<th>Daylight Zone Depth</th>
<th>Daylight Area</th>
<th>Actual</th>
<th>Actual</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>BASEMENT</td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>ROOM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.29</td>
<td>0.176</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>B02</td>
<td>ROOM NAME</td>
<td>30</td>
<td>700 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>25.00</td>
<td>184 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>600.00</td>
<td>0.26</td>
<td>0.157</td>
<td>0.15 - 0.18</td>
<td>600</td>
</tr>
<tr>
<td>B03</td>
<td>ROOM NAME</td>
<td>10</td>
<td>400 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>200.00</td>
<td>0.13</td>
<td>0.077</td>
<td>0.15 - 0.18</td>
<td>0</td>
</tr>
<tr>
<td>B04</td>
<td>ROOM NAME</td>
<td>18</td>
<td>400 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>14.00</td>
<td>103 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>300.00</td>
<td>0.26</td>
<td>0.154</td>
<td>0.15 - 0.18</td>
<td>360</td>
</tr>
<tr>
<td>B05</td>
<td>ROOM NAME</td>
<td>30</td>
<td>400 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.26</td>
<td>0.154</td>
<td>0.15 - 0.18</td>
<td>360</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>2,400 SF</td>
<td>1360 SF</td>
<td></td>
</tr>
<tr>
<td>1ST FLOOR</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.29</td>
<td>0.176</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>102</td>
<td>RM NAME</td>
<td>10</td>
<td>400 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>200.00</td>
<td>0.13</td>
<td>0.077</td>
<td>0.15 - 0.18</td>
<td>0</td>
</tr>
<tr>
<td>103</td>
<td>RM NAME</td>
<td>16</td>
<td>300 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>12.00</td>
<td>88 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>300.00</td>
<td>0.29</td>
<td>0.176</td>
<td>0.15 - 0.18</td>
<td>300</td>
</tr>
<tr>
<td>104</td>
<td>RM NAME</td>
<td>10</td>
<td>150 SF</td>
<td>10</td>
<td>3.00</td>
<td>6.00</td>
<td>7.00</td>
<td>42 SF</td>
<td>0.62</td>
<td>0.60</td>
<td>20.00</td>
<td>150.00</td>
<td>0.28</td>
<td>0.174</td>
<td>0.15 - 0.18</td>
<td>150</td>
</tr>
<tr>
<td>105</td>
<td>RM NAME</td>
<td>10</td>
<td>150 SF</td>
<td>10</td>
<td>3.00</td>
<td>6.00</td>
<td>7.00</td>
<td>42 SF</td>
<td>0.62</td>
<td>0.60</td>
<td>20.00</td>
<td>150.00</td>
<td>0.28</td>
<td>0.174</td>
<td>0.15 - 0.18</td>
<td>150</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>1,500 SF</td>
<td>1000 SF</td>
<td></td>
</tr>
<tr>
<td>2ND FLOOR</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>20.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.29</td>
<td>0.176</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>202</td>
<td>RM NAME</td>
<td>10</td>
<td>400 SF</td>
<td>10</td>
<td>2.66</td>
<td>7.34</td>
<td>7.00</td>
<td>51 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>200.00</td>
<td>0.13</td>
<td>0.077</td>
<td>0.15 - 0.18</td>
<td>0</td>
</tr>
<tr>
<td>203</td>
<td>RM NAME</td>
<td>16</td>
<td>300 SF</td>
<td>15</td>
<td>7.00</td>
<td>8.00</td>
<td>75.00</td>
<td>600 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>30.00</td>
<td>2700.00</td>
<td>0.11</td>
<td>0.076</td>
<td>0.15 - 0.18</td>
<td>0</td>
</tr>
<tr>
<td>204</td>
<td>RM NAME</td>
<td>10</td>
<td>150 SF</td>
<td>10</td>
<td>3.00</td>
<td>6.00</td>
<td>7.00</td>
<td>42 SF</td>
<td>0.62</td>
<td>0.60</td>
<td>20.00</td>
<td>150.00</td>
<td>0.28</td>
<td>0.174</td>
<td>0.15 - 0.18</td>
<td>150</td>
</tr>
<tr>
<td>205</td>
<td>RM NAME</td>
<td>10</td>
<td>150 SF</td>
<td>10</td>
<td>3.00</td>
<td>6.00</td>
<td>7.00</td>
<td>42 SF</td>
<td>0.62</td>
<td>0.60</td>
<td>20.00</td>
<td>150.00</td>
<td>0.28</td>
<td>0.174</td>
<td>0.15 - 0.18</td>
<td>150</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>6,600 SF</td>
<td>700 SF</td>
<td></td>
</tr>
<tr>
<td>3RD FLOOR</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>3.00</td>
<td>7.00</td>
<td>21.00</td>
<td>147 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.29</td>
<td>0.176</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>302</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>3.00</td>
<td>7.00</td>
<td>20.00</td>
<td>140 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.28</td>
<td>0.168</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>303</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>3.00</td>
<td>7.00</td>
<td>20.00</td>
<td>140 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.28</td>
<td>0.168</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>304</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>3.00</td>
<td>7.00</td>
<td>20.00</td>
<td>140 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.28</td>
<td>0.168</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>305</td>
<td>RM NAME</td>
<td>20</td>
<td>500 SF</td>
<td>10</td>
<td>3.00</td>
<td>7.00</td>
<td>20.00</td>
<td>140 SF</td>
<td>0.60</td>
<td>0.60</td>
<td>20.00</td>
<td>400.00</td>
<td>0.28</td>
<td>0.168</td>
<td>0.15 - 0.18</td>
<td>400</td>
</tr>
<tr>
<td>Sub-Total This Floor</td>
<td>2500 SF</td>
<td>2000 SF</td>
<td></td>
</tr>
<tr>
<td>SF OF AREA THAT ACHIEVES DAYLIGHT FACTOR</td>
<td>13,000 SF</td>
<td>SF OF AREA BEING EVALUATED FOR DAYLIGHT FACTOR</td>
<td>13,000 SF</td>
<td></td>
</tr>
<tr>
<td>SF OF AREA THAT ACHIEVES DAYLIGHT FACTOR</td>
<td>5,060 SF</td>
<td></td>
</tr>
<tr>
<td>Percentage achieved</td>
<td>38.9%</td>
<td></td>
</tr>
</tbody>
</table>

Requirement to achieve credit Q7.3 is Daylight in 75% of other spaces

Complies? (Y/N): No
Hatch Daylight & Views

Views Calculation Form

Project:

- Architect:
 - Preparer:
 - LLW #:
 - Date:
 - Design #:
 - Compliant Area (sf):

BASEMENT

<table>
<thead>
<tr>
<th>RM #</th>
<th>RM NAME</th>
<th>Total Occupiable Area in SF</th>
<th>Step 1: Horizontal View at: 36" for rooms used by for PK-thru 5 grades</th>
<th>Step 2: Calculated Area of Room that Does Not have Direct Line of Sight to Perimeter Vision Glazing</th>
<th>Compliant Area (sf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B01</td>
<td>Pre-Kindergarten room</td>
<td>875</td>
<td>Y</td>
<td>0</td>
<td>875</td>
</tr>
<tr>
<td>B02</td>
<td>General office</td>
<td>700</td>
<td>NA</td>
<td>Y</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,575</td>
<td></td>
<td></td>
<td>1,575</td>
</tr>
</tbody>
</table>

1ST FLOOR

<table>
<thead>
<tr>
<th>RM Name</th>
<th>Room Name</th>
<th>SF of Area</th>
<th>Hoping Views</th>
<th>Calculated Area</th>
<th>Compliant Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>B01</td>
<td>200</td>
<td>Y</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>B02</td>
<td>200</td>
<td>NA</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2ND FLOOR

<table>
<thead>
<tr>
<th>RM Name</th>
<th>Room Name</th>
<th>SF of Area</th>
<th>Hoping Views</th>
<th>Calculated Area</th>
<th>Compliant Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>B01</td>
<td>200</td>
<td>NA</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>202</td>
<td>B02</td>
<td>200</td>
<td>NA</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3RD FLOOR

<table>
<thead>
<tr>
<th>RM Name</th>
<th>Room Name</th>
<th>SF of Area</th>
<th>Hoping Views</th>
<th>Calculated Area</th>
<th>Compliant Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>B01</td>
<td>200</td>
<td>NA</td>
<td>Y</td>
<td>0</td>
</tr>
<tr>
<td>301</td>
<td>B02</td>
<td>200</td>
<td>NA</td>
<td>Y</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4TH FLOOR

<table>
<thead>
<tr>
<th>RM Name</th>
<th>Room Name</th>
<th>SF of Area</th>
<th>Hoping Views</th>
<th>Calculated Area</th>
<th>Compliant Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>B01</td>
<td>200</td>
<td>NA</td>
<td>N</td>
<td>0</td>
</tr>
<tr>
<td>401</td>
<td>B02</td>
<td>250</td>
<td>NA</td>
<td>Y</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SF OF AREA BEING EVALUATED FOR VIEWS: 3,375

SF OF AREA WITH VIEWS: 3,229

Percent Access to Views: 95.7%

Requirement to achieve credit Q 7.4 is Views for 90% of regularly occupied spaces

Complies? (Y / N): Y

Directions:

1. **Determine which spaces are regularly occupied and where tasks would not be hindered by views.** Include only those spaces on this form. The types of spaces that would not be regularly occupied include: circulation areas, MEP spaces, duplicating rooms, storage rooms. The types of spaces where vision glazing could negatively impact space use include computer rooms, auditoriums, gymnasiums and gymatoriums. Further clarification on these items are available in the Green Schools Guide and the LEED-NC Reference Guide.
2. **Copy additional lines as required for each room to be included on this form.**
3. **Determine which spaces/portions of spaces do not have horizontal view to glazing above 36" or 42" as applicable.** Enter "0" in Compliant Area column for these spaces.
4. **For regularly occupied spaces requiring views, calculate from plans the area of room that does not have direct line of site view to glazing.**
5. **Enter room number, room name, SF of room, whether room has glazing at 36" or 42" and non compliant floor area in room (for those spaces with glazing at applicable height).**
6. **Check that all sub-total figures are included in worksheet cells summing SF OF AREA BEING EVALUATED FOR VIEWS and SF OF AREA WITH VIEWS.**

Notes:

1. **Line of sight may be drawn through interior glazing.** For multi-occupant spaces, the actual square footage with direct line of sight to perimeter vision glazing is counted. For private offices, the entire square footage of the office can be counted if 75% or more of the area has direct line of sight to perimeter vision glazing.
Architect's Statement - Design Phase:

As Architect of Record, I verify that the statements initialed by me on the following pages are accurate to the best of my knowledge and are compliant with credit requirements of the NYC Green Schools Guide.

Narratives for all credits have been provided and updated as necessary with the final design submission.

Calculations have been provided, according to the credit requirements, and updated as necessary with the final design submission.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

Engineer's Statement - Design Phase:

As Engineer of Record, I verify that the statements initialed by me on the following pages are accurate to the best of my knowledge and are compliant with credit requirements of the NYC Green Schools Guide.

Narratives for all credits have been provided and updated as necessary with the final design submission.

Calculations have been provided, according to the credit requirements, and updated as necessary with the final design submission.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>
S1.2R - Site Selection

The construction documents for this project call for no buildings, roads or parking areas to be developed on land meeting the following criteria: (For projects with special circumstances, a detailed narrative describing compliance with prescribed site selection criteria has been provided.)

- Previously undeveloped land whose elevation was less than 5-feet above the 100 year FEMA designated flood elevation.
- Land that is specifically identified as habitat for any species on Federal or State threatened or endangered species lists.
- Land within 100 feet of any wetlands as defined by Unites States Code of Federal Regulations 40 CFR Parts 230-233 and Part 22, and isolated wetlands or areas of special concern identified by state or local rule, OR within setback distances from wetlands prescribed in state or local regulations as defined by local or state rule or law, whichever is more stringent.
- Previously undeveloped land that is within 50 feet of a water body, defined as seas, lakes, rivers, streams and tributaries that support or could support fish, recreation or industrial use, consistent with the terminology of the Clean Water Act.
- Land that prior to acquisition for this project was public parkland, unless land of equal or greater value as parkland is accepted in trade by the public landowner.

S1.3 - Sustainable Site and Building Layout

The following design measures have been undertaken and a narrative, site plan and section (as required) have been submitted to document the measures undertaken. (Check no fewer than three)

- Orient and compose building to take advantage of natural daylighting.
- Plot shadow patterns from surrounding buildings onto project site to optimize access to daylight.
- Plot shadow patterns from proposed building(s)/addition onto adjacent properties and buildings, and consider design options to address impact as necessary.
- Consider prevailing winds when determining the site and building layout.
- Take advantage of existing adjacent building and natural land formations and vegetation to provide shelter from extreme weather or to deflect unwanted noise.
- Design landscaping to mitigate solar gain and winter winds.
- Identify viable locations on roof for potential renewable energy generation.

S1.4 - Development Density and Community Connectivity

This project is on a previously developed site that meets one of the criteria indicated below.

- This project is on a previously developed site within a 1/2 mile of a residential zone/neighborhood with an average density of 10 dwelling units/acre AND is within a 1/2 mile radius of at least 10 basic services and with pedestrian access to those services. An annotated plan has been submitted as documentation.
- OR
- This project is on a previously developed site AND in a community with a minimum density if 60,000 sqft per acre net. A Development Density Form has been submitted as documentation.

S1.5R - Joint Use of Facilities, Community Access

The building design facilitates shared use of facilities by the community. A narrative has been provided describing design features incorporated to facilitate community access.

S1.6R - Environmental Site Assessment

A Phase I Environmental Site Assessment as described in ASTM E1527-05 was conducted.

- Remediation is not required.
- Remediation is required but is not part of the scope of this project as it will be completed under another project.
- Remediation is required and will be part of this project but does not meet the requirements to achieve Credit S1.7, Brownfield Redevelopment.
- Remediation is required and will be documented during Construction under Credit S1.7, Brownfield Redevelopment.
S2.1 - Alternative Transportation, Public Transportation Access

This project site is within 1/2 mile (2,640 feet) pedestrian route of an existing, or planned and funded, commuter rail, light rail or subway stations OR within 1/4 mile (1,320 feet) pedestrian route of at least one stop on two different public bus lines as indicated below. A scaled annotated site plan showing the length of the pedestrian route and identifying the stations has been provided as documentation. Summary information is below.

<table>
<thead>
<tr>
<th>Distance to Stop/Station in Feet</th>
<th>Line Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S2.2 - Alternative Transportation, Bicycle Storage & Changing Rooms

This project includes secure bicycle racks and/or storage for 5% or more of all building staff and students above grade 3 level and provides shower and changing facilities in the building for 0.5% of full-time staff.

S2.3R - Alternative Transportation, Low Emitting & Fuel-Efficient Vehicles/Parking Capacity

This project implements one of the following alternative transportation strategies:

- No new parking is provided on this project site. A narrative has been provided summarizing proximity to public transportation and why no new parking is required.
- OR
- If on-site parking is provided, 5% of spaces provided to be designated preferred parking spaces reserved for low-emitting and fuel-efficient vehicles, vanpool or carpool. A narrative and site plan outlining compliance have been provided as documentation.

S3.2 - Site Development, Maximize Open Space

For projects with no zoning-mandated open space requirement, the area of open vegetated space, qualifying hardscape or qualifying green roof for this project is equal to at least 20% of the site area. An annotated site plan with area information has been provided as documentation.

S4.1 - Stormwater Design, Quality Control

This project was designed to include best management practices (BMPs) capable of treating stormwater runoff from 90% of the average annual rainfall. These BMP’s are capable of removing 80% of the average annual post development total suspended solids (TSS) load. A narrative has been submitted describing Best Management Practices per NYSPDES and structural controls as documentation.

S5.1R - Heat Island Effect, Roof

The roof surfaces comply with one of the following (annotated roof plan with area calculations has been submitted as documentation):

- The roof materials have a Solar Reflectance Index (SRI) equal to or greater than 79 for low sloped roofs (< 2:12), and 29 for steep sloped roofs (>2:12) for a minimum of 75% of the roof surface.
 - OR
 - The roof has vegetation for at least 50% of the roof area.
 - OR
 - 75% of the roof area is covered with either roof materials having Solar Reflectance Index compliant with the standard listed above, or with vegetated roofs.

S6.1R - Light Pollution Reduction

For Interior Lighting

- The construction documents include automatic controls that turn off non-essential interior lighting during hours when the school is not in operation.
 - OR
 - For projects with lights not automatically controlled to turn off, the angle of the maximum candela from each luminaire shall not exit through buildings.

For Exterior Lighting

- This project scope includes no exterior lighting.
 - OR
 - For projects with exterior lighting, Light Pollution Reduction Forms have been submitted including calculations for exterior site areas and building façade/landscape areas indicating compliance with the credit requirements.
Water

W1.1 - Water Efficient Landscaping Reduce by 50%
This project reduces the use of potable water for landscape irrigation by doing the following:
- The landscaping designed does not require a permanent irrigation system using potable water. Any temporary irrigation systems called for in the construction documents for plant establishment are specified to be removed within one year of installation. The minimum vegetative site area of 5% has been met.

W1.2 - Water Efficient Landscaping, No Potable Water Use or Irrigation
This project reduces the use of potable water for landscape irrigation by doing the following:
- The landscaping and irrigation system have been designed to reduce the use of potable water for irrigation from a calculated baseline. Calculations have been submitted based on methodology from LEED for Schools, credit WEc1 and updated based on final construction documents.

W2.1R - Minimum Water Use Reduction 20%
- This project uses 20% less water by the percentage indicated than the baseline fixture performance requirements of the Energy Policy Act of 1992. A completed Water Use Reduction Form has been submitted for this project to demonstrate this.

W2.2 - Enhanced Water Use Reduction 30%
- This project uses 30% less water by the percentage indicated than the baseline fixture performance requirements of the Energy Policy Act of 1992. A completed Water Use Reduction Form has been submitted for this project to demonstrate this.

W2.3 - Enhanced Water Use Reduction 35%
- This project uses 35% less water by the percentage indicated than the baseline fixture performance requirements of the Energy Policy Act of 1992. A completed Water Use Reduction Form has been submitted for this project to demonstrate this.

W2.4 - Enhanced Water Use Reduction 40%
- This project uses 40% less water by the percentage indicated than the baseline fixture performance requirements of the Energy Policy Act of 1992. A completed Water Use Reduction Form has been submitted for this project to demonstrate this.

Energy

E2.1R - Fundamental Refrigerant Management
No CFC-based refrigerants have been used in the HVAC or refrigerant systems of this project. For modernization and renovation projects, CFC-based refrigerants have not be re-used and non-CFC systems have been specified for any replacement equipment.

E2.2 - Enhanced Refrigerant Management
The Weighted Average Atmospheric Impact of HVAC refrigeration units on this project is less than 100. A completed Refrigerant Impact Form, updated as necessary based on the final design submission, has been submitted for this project to demonstrate this.

E3.2R - Energy Management System Controls, HVAC and Hot Water Systems
This project utilizes an open protocol Facility Management System (FMS) that controls the HVAC and Hot water systems.

E4.1R - Minimum Energy Performance
This project’s construction documents comply with the following energy code requirements:
- The mandatory provisions (Sections 5.4, 6.4, 7.24, 8.4, 9.4 and 10.4) of ASHRAE/IESNA Standard 90.1-2007 (without amendments)
 AND
- The prescriptive requirements (Sections 5.5, 6.5, 7.5 and 9.5) or performance requirements (Section 11) of ASHRAE/IESNA Standard 90.1-2007 (without amendments).

E4.2R - HVAC System Sizing, Avoid Over Sizing
All major HVAC components of this project have been designed to correctly match loads to avoid system over-sizing.
- Load calculations, design drawings and a written narrative rationale for selecting the specified equipment and establishing the most efficient system size and configuration.
Materials

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.1R - Storage and Collection of Recyclables</td>
<td>The final project construction documents include collection and storage areas for recyclable materials. The collection areas have been sized to meet the schools needs. The recycling area will accommodate recycling of plastics, metals, paper, cardboard and glass.</td>
</tr>
<tr>
<td>M 2.5R - Wallboard & Roof-deck Products, Mold Resistance</td>
<td>The wallboard and roof-deck products specified in this project comply with the referenced mold resistance standards.</td>
</tr>
<tr>
<td>M2.6R - Provide Low - Mercury Lighting Reduce Mercury Waste</td>
<td>All the fluorescent lighting fixtures and lamping specified for this project are low-mercury.</td>
</tr>
</tbody>
</table>

Indoor Environmental Quality

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **Q1.1R - Minimum IAQ Performance and Increased Ventilation** | This project meets the minimum requirements of Sections 4 through 7 of ASHRAE 62.1-2004 Ventilation for Acceptable Indoor Air Quality:
 | □ The project meets the minimum requirements of Sections 4 through 7 of ASHRAE 62.1-2004 Ventilation for Acceptable Indoor Air Quality. Construction documents submitted reflect this compliance.
 | □ The mechanical system was designed using whichever ventilation rates are larger: the NYC DOB Code ventilation rates or 30% above the ASHRAE Standard 62.1-2004 breathing zone outdoor ventilation rates. The exceptions are cafeterias and multipurpose rooms served by rooftop units that also serve an associated kitchen. The mechanical systems for these cafeterias and multi-purpose rooms shall be designed using whichever ventilation rate is larger: NYC DOB Code ventilation rates or ASHRAE Standard 62.1-2004 breathing zone outdoor ventilation rates, without the 30% increase.
 | □ A design narrative has been provided describing this project’s ventilation design as documentation. This narrative includes specific information regarding fresh air intake volumes for each occupied zone to demonstrate that the design exceeds the referenced standard by at least 30%. |
| **Q1.2R - Outdoor Air Delivery Monitoring** | This project includes air flow stations on all outside air intakes of central heating, ventilating and air-conditioning equipment. Construction documents showing the air flow stations have been provided as documentation. |
| **Q4.1R - Indoor Chemical & Pollutant Source Control** | This project employs the following strategies to reduce exposure to potentially hazardous particulates and chemical pollutants:
 | □ Entries have permanent entryway systems at least ten feet long in the primary direction of travel that capture dirt and particulates.
 | □ All areas where hazardous gases and/or chemicals are present/used have been designed to be sealed according to the credit requirement and have been provided with an exhaust system that provides sufficient exhaust with respect to adjacent spaces to prevent cross-contamination to adjacent spaces.
 | □ Regularly occupied areas of the building are specified to have air filtration media that provides a Minimum Efficiency Reporting Value (MERV) of 13 or better.
 | □ A design narrative has been provided listing affected spaces, how they are sealed and separated and related exhaust systems. |
Q4.2 R - Electric Ignition Stoves
This project employs only electric ignitions for gas-fired cooking appliances that have that capability. Specifications for gas-fired cooking appliances have been provided as documentation.

Q4.3R - Provide HEPA Vacuums
Maintenance and Equipment list for this project developed by the DOE/DSF Unit includes only HEPA vacuums. The SCA has provided written documentation to the design team confirming HEPA vacuums are on the Maintenance and Equipment list for this project.

Q5.1R - Controllability of Systems, Lighting
This project has been designed with the following lighting controls:
- ☐ Lighting controllability has been provided for a minimum of 90% of the building occupants in regularly occupied spaces.
- ☐ A narrative has been provided describing the project’s lighting control strategy. Information on the type and location of controls is included in that narrative.

Q5.2R - Controllability of Systems, Thermal Comfort
This project has been designed with the following thermal comfort controls:
- ☐ Comfort controls have been provided for a minimum of 50% of the building occupants in regularly occupied spaces.
- ☐ A narrative has been provided describing the project’s comfort control strategy. Information on the type and location of controls is included in that narrative.

Q6.1R - Thermal Comfort, Design
This project’s HVAC system and building envelope have been designed to meet the requirements of ASHRAE Standard 55-2004
- ☐ As documentation, a narrative has been provided describing the method used to establish the thermal comfort conditions.
- Relevant thermal data is included in the chart below:

<table>
<thead>
<tr>
<th>Season</th>
<th>Maximum Indoor Space Design Temperature Deg (F)</th>
<th>Minimum Indoor Space Design Temperature Deg (F)</th>
<th>Maximum Indoor Space Design Relative Humidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q7.1 - Daylight & Views, Daylight in 75% Classrooms
This project is designed to provide classroom occupants a connection between indoor spaces and the outdoors through the introduction of daylight. A completed Daylight Calculation Form for this project has been provided, updated as necessary based on the final design documents. A detailed narrative has been provided describing any special areas excluded from compliance, and why daylighting would hinder these areas functions.

Q7.2 - Daylight & Views, Daylight in 90% Classrooms
This project is designed to provide classroom occupants a connection between indoor spaces and the outdoors through the introduction of daylight. A completed Daylight Calculation Form for this project has been provided, updated as necessary based on the final design documents. A detailed narrative has been provided describing any special areas excluded from compliance, and why daylighting would hinder these areas functions.

Q7.3 - Daylight & Views, Daylight in 75% of Other Spaces
This project is designed to provide the building occupants a connection between indoor spaces and the outdoors through the introduction of daylight. A completed Daylight Calculation Form for this project has been provided, updated as necessary based on the final design documents. A detailed narrative has been provided describing any special areas excluded from compliance, and why daylighting would hinder these areas functions.
Q7.4 - Daylight & Views, Views
Occupants in 90% of regularly occupied spaces will have direct lines of site to perimeter glazing. A completed Views Calculation Form for this project has been provided, updated as necessary based on the final design documents. A detailed narrative has been provided describing any special areas excluded from compliance, and why views would hinder these areas functions.

Q7.5 - Visual Performance, Artificial Direct-Indirect Lighting
This project uses only pendant mounted high-efficacy T-8 fluorescent lamps in all classrooms. I have provided a lighting schedule and reflected ceiling plans as documentation.

Q8.1R - Minimum Acoustical Performance
This project employs the following strategies for good acoustic performance:

☐ Classrooms have a maximum background noise level of 45 dBA.
 AND

☐ All classrooms have 0.6-second maximum (unoccupied) mid-frequency (average of 500, 1,000 and 2,000 Hz) reverberation times for classrooms with volumes of up to 10,000 ft³; 0.7-second maximum (unoccupied) mid-frequency reverberation time for classrooms of 10,000 to 20,000 ft³.
 AND

☐ A report from a qualified acoustical consultant has been provided as documentation.

Q8.2 - Enhanced Acoustical Performance & Sound Isolation for Special Spaces
This project has been designed to acoustically isolate loud rooms from noise sensitive spaces. A report from a qualified acoustical consultant has been submitted as documentation.

Q8.3 - Acoustic Windows
This building has acoustically rated windows with a minimum STC level of higher than 40 for classroom and other educational spaces, as recommended by the acoustic consultant for this project. A report from a qualified acoustical consultant has been submitted as documentation.
Additional Credits

A1.1R - LEED Accredited Professional
There is a LEED accredited professional on the design team. Copy of accreditation certificate has been provided.

A2.1 - Heat Island Effect, Non-Roof
Project site has 50% of site hardscape complying with at least one of the following:
- □ Hardscape materials have a Solar Reflectance Index (SRI) equal to or greater than 29.
 OR
- □ Shade from architectural devices or structures have an SRI of at least 29
 OR
- □ Open grid pavement system at least 50% pervious
 OR
- □ Shade from structures covered with solar panels
 OR
- □ Shade from existing canopy or within five years of landscape installation

A2.2 - Stormwater Design Quantity Control
This project minimized stormwater runoff by implementing one of the following:
- □ Project site is on average less than 50% impervious. The post-development discharge rate is less than the pre-development rate.
 OR
- □ Project site is on average greater than 50% impervious. The post-development stormwater runoff has been decreased by 25%.
 AND
- □ Quantity calculations have been provided as documentation. A narrative has also been provided that describes site conditions, measures taken and controls implemented to prevent excessive velocities and associated erosion. The following chart has been completed for structural and non-structural Best Management Practices (BMPs).

<table>
<thead>
<tr>
<th>Best Management Practice</th>
<th>Description of BMP’s contribution to</th>
<th>% of Annual Rainfall Volume treated by BMP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A3.1 - Optimized Energy Performance
- □ Project specific energy cost reduction modeling has been completed for this project. A copy of the energy modeling report has been submitted, updated as necessary based on the final design submission.

The energy modeling program used was: ________________________________

The principal heat source is: ________________________________

The percentage of energy cost reduction per ASHRAE 90.1-2007 ECB was: ________________________________

The percentage of energy cost reduction per ASHRAE 90.1-2007 Appendix G was: ________________________________
A3.2 - Onsite Renewable Energy

Project specific energy cost reduction modeling has been completed for this project. The results from that modeling were used to project annual building energy costs and the percentage of energy use has been offset by on-site renewable sources.

Renewable Energy Source Summary

Renewable source: ____________________________
Back-up fuel used when renewable source unavailable: ____________________________
Rated capacity of the renewable energy source: ____________________________
Annual energy generated from renewable source: ____________________________
Renewable energy cost: ____________________________
The total annual proposed design site energy use: ____________________________
The total annual proposed design site energy cost: ____________________________
Percentage of annual energy cost saved by on-site renewable energy according to energy modeling calculations: ____________________________
Architect: Firm Name: __
Address: ___
Telephone: __
email: __
Date: ___

Project Name: __
Project Address: __

LLW #: ___
Design #: ___

Engineer: Firm Name: ___
Address: ___
Telephone: ___
email: __
BCC #: ___
Design Manager: ___
Constr Specialist: __
BCC Reviewer: ___
Commissioning: ___

Architect's Statement - Construction Phase:

As Architect of Record, I verify that the statements initialed by me on the following pages are accurate to the best
of my knowledge.

Narratives for all credits have been provided and updated as necessary with the final design submission.

Calculations have been provided, according to the credit requirements, and updated as necessary with the final
design submission.

Name __ Title __________ Signature __________ Date _____

Engineer's Statement - Construction Phase:

As Engineer of Record, I verify that the statements initialed by me on the following pages are accurate to the best
of my knowledge.

Narratives for all credits have been provided and updated as necessary with the final design submission.

Calculations have been provided, according to the credit requirements, and updated as necessary with the final
design submission.

Name __ Title __________ Signature __________ Date _____
Design Team Certification Form

CONSTRUCTION PHASE

NYC Green Schools Rating System

Architects
Initials

Engineers
Initials

Site

S1.6R - Environmental Site Assessment
A Phase I Environmental Site Assessment as described in ASTM E1527-05 was conducted. If the Phase I indicated contamination, then a Phase II ESA was conducted and the site was remediated as required.

S1.7 - Brownfield Redevelopment
This project site was determined to be contaminated by the method indicated below. A narrative summary of the

☐ ASTM E 1903-97 Phase II Environmental Site Assessment.
 OR
☐ Defined as a Brownfield by a New York City, New York State, or federal government agency.
 OR
☐ Reg. 40CFR Part 763
 OR
☐ Local Voluntary Cleanup Program (Such as with NYC DEC).

S3.1 - Site Development, Protect or Restore Habitat
The project site was previously developed or graded and 50% of the site area was restored using native and/or adaptive plantings.

The total site area excluding the building footprint is: __________

The total site area that has been restored using native and/or adaptive plantings is: __________

The percentage of site that has been restored using native and/or adaptive plantings is: __________

Water

There are no construction Phase Water Section credits.

Energy

E3.1R - Measurement & Verification
This project implements a Measurement & Verification (M&V) Plan consistent with IPMVP Option C - Whole Building Comparison.

E5.1 - Green Power
The SCA has provided documentation to the Design Team that they have applied for and have received approval for obtaining the required 35% building electrical consumption through Green Power credits.
Materials

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Percentage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1.2 & M1.3 - Building Reuse, Maintain Existing Walls, Floor & Roof</td>
<td></td>
<td>On this project, the following percentage of the existing floor, wall and roof structure of the existing building were reused. I have provided a completed copy of the Building Reuse Form.</td>
</tr>
<tr>
<td>□ 75%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1.4 - Building Reuse, Maintain Interior Non-Structural Elements</td>
<td></td>
<td>On this project, 50% of the existing interior non-structural elements from the existing building were reused. I have provided a completed copy of the Building Reuse Form.</td>
</tr>
<tr>
<td>M2.1R - Recycled Content</td>
<td></td>
<td>The materials for this project include 10% or more recycled content. A Recycled Content Summary Form has been submitted as documentation.</td>
</tr>
<tr>
<td>□ 20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2.3 - Regional Materials</td>
<td></td>
<td>The materials for this project include 10% or more regional materials (extracted, processed and manufactured). A Regional Materials Summary Form has been submitted as documentation.</td>
</tr>
<tr>
<td>□ 20%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indoor Environmental Quality

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3.1R - Low Emitting Materials, Adhesives and Sealants</td>
<td>All adhesives and sealants used on the interior of the building comply with the VOC limits and requirements. A Low Emitting Materials - Summary Form has been submitted as documentation.</td>
</tr>
<tr>
<td>Q3.2R - Low Emitting Materials, Paints and Coatings</td>
<td>All paints and coatings used on the interior of the building comply with the VOC limits and requirements as established by Green Seal Standard GS-11 Paints, and Green Seal Standard GC-03, Anti-Corrosive Paints, and South Coast Air Quality Management District. A Low Emitting Materials - Summary Form has been submitted as documentation.</td>
</tr>
<tr>
<td>Q3.3R - Low Emitting Materials, Flooring Systems</td>
<td>All carpet and carpet cushions for the project meet the testing and product requirements of the Carpet and Rug Institute’s Green Label Plus program. A Low Emitting Materials - Summary Form has been submitted as documentation.</td>
</tr>
<tr>
<td>Q3.4R - Low-Emitting Materials, Composite Wood & Agrifiber Products</td>
<td>All composite wood and agrifiber products used on the interior of the building (defined as inside the weatherproofing system) contain no added urea-formaldehyde resins. Laminating adhesives used to fabricate on-site and shop-appled composite wood and agrifiber assemblies contain no added urea-formaldehyde resins.</td>
</tr>
</tbody>
</table>
A4.1 - Low Emitting Materials, Furniture and Furnishings
The SCA/FFE group has provided written documentation to the design team indicating that each furniture system (work station) and seating product item is Greenguard certified or registered or that its emissions meet or exceed the best practice air emissions standards as established by the US EPA's Environmental Technology Verification (ETV).

A4.2 - Low Emitting Materials, Ceiling and Wall Systems
All ceiling and wall systems meet the requirements. A Low Emitting Materials-Summary Form has been submitted as documentation.

A5.1 - The School Building as a Teaching Tool
Built-in architectural features or signage have been developed to communicate the sustainable features of this project. These are supported by educational program, literature or curriculum related to the sustainable features of this project. A descriptive narrative has been submitted as documentation.
Table 1: Construction Waste Management diversion Summary

<table>
<thead>
<tr>
<th>Diverted / Recycled Materials Description</th>
<th>Diversion / Recycling Hauler or Location</th>
<th>Quantity of Diverted / Recycled Waste</th>
<th>Units (tons or cubic yards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wood</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Gypsum Wallboard</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Crushed Asphalt</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Masonry</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cardboard</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CONSTRUCTION WASTE DIVERTED: 23

<table>
<thead>
<tr>
<th>Landfill materials Description</th>
<th>Landfill Hauler or Location</th>
<th>Quantity of Diverted / Recycled Waste</th>
<th>Units (tons or cubic yards)</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Mixed Waste</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CONSTRUCTION WASTE SENT TO LANDFILL: 3

TOTAL OF ALL CONSTRUCTION WASTE: 26

PERCENTAGE OF CONSTRUCTION WASTE DIVERTED FROM LANDFILL: 88%
CONTRACTOR'S SUSTAINABLE MATERIALS FORM

Credit M 2.1R, M 2.2, M2.3R and M2.4

NYC Green Schools Rating System

Definitions:

* **Post-Consumer Recycled Content:** Material or finished product that has served its intended consumer use and has been discarded by consumer.

Pre-Consumer Recycled Content: Recovered industrial and manufacturing materials diverted from municipal solid waste for the purpose of collection, recycling and disposition. Examples include fly-ash and synthetic gypsum, because they are waste products from coal burning electricity plants. (Scrap raw materials that can be reused in the same manufacturing process from which they are recovered are not considered Pre-Consumer Recycled Content.)

***Regional Materials:** Regionally manufactured materials that have their origin within 500 miles of the project site. These would include products that are regionally mined, harvested, salvaged or re-used (including those salvaged from the site.)

Notes:

1. Recycled content for concrete - provide cost for cementitious materials and percentage of cementitious materials that are recycled-content.
2. Recycled content for steel products - where it is not possible to determine recycled content use default assumption of 25% post-consumer recycled content.
3. Regional content for concrete - provide combined cost for all concrete materials and distance information requested.
4. Regional content - for materials with various points of extraction all within the 500-mile radius list a single item with the greatest distance.
5. Provide back-up documentation for information on form above - such as product data or manufacturer's statements.

Contractor Certification:

I, __________________________ a duly authorized representative of __________________________ hereby certify that the material information herein is an accurate representation of the material qualifications provided, as components of the final building construction. Furthermore, I understand that any change in such qualifications during the purchasing period will require prior written approval from the Construction Manager and Owner.

Signature of Authorized Representative: __________________________ Date: __________

This form may be downloaded from SCA web site.

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Manufacturer</th>
<th>Material Cost (no Labor & Equip.)</th>
<th>Recycled Content</th>
<th>Regional*** Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$1,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Percentage Post-Consumer by weight</th>
<th>Percentage Pre-Consumer by weight</th>
<th>Percentage Regionally Extracted*** by weight</th>
<th>Distance between project site and extraction site</th>
<th>Distance between project site and manufacture site</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>miles</td>
<td>miles</td>
</tr>
</tbody>
</table>

05/01/09
CONTRACTOR'S SUSTAINABLE MATERIALS - TRACKING FORM

Credit M 2.1R, M 2.2, M2.3R and M2.4

<table>
<thead>
<tr>
<th>Spec. Section (in CSI order)</th>
<th>Material / For which recycled or regional content documentation must be submitted</th>
<th>Vendor/Sub-Contractor Name</th>
<th>Recycled Content Documentation</th>
<th>Regional Content Documentation</th>
<th>Cost Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>02200</td>
<td>Earthwork</td>
<td></td>
<td>Required (Yes/No)</td>
<td>Submitted (Date)</td>
<td>Required (Yes/No)</td>
</tr>
<tr>
<td>02512/3</td>
<td>Asphalt Pavement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02900</td>
<td>Landscape Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03200</td>
<td>Concrete Reinforcement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03300</td>
<td>Foundation Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03300</td>
<td>Cast-in-place Concrete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04200</td>
<td>Concrete Masonry Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04200</td>
<td>Brick</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04435</td>
<td>Cast Stone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05120</td>
<td>Structural Steel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05210/20/30</td>
<td>Steel Joists</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05300</td>
<td>Metal Deck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05710</td>
<td>Steel Stairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07212</td>
<td>Batt Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07212</td>
<td>Rigid Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07250</td>
<td>Sprayed Fire Resistive Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07560</td>
<td>Roofing Membrane</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07560</td>
<td>Roofing Insulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08110</td>
<td>Steel Doors and Frames</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08521/2/4</td>
<td>Aluminum Window Frames</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09260</td>
<td>Gypsum Wall Board and Cement bd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09310</td>
<td>Tile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09510</td>
<td>Acoustic Ceilings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09650</td>
<td>Vinyl Comp. Tile and Sheet Flooring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09680</td>
<td>Carpet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10151</td>
<td>Toilet and Dressing Rm Compartments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10505</td>
<td>Lockers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: For Tracking Form Initial Submission include any vendor/subcontractor names available and complete yes/no boxes.

05/01/09

Electronic copy of form can be downloaded from SCA Web site
Commissioning Agent Certification Form

POST CONSTRUCTION PHASE ONLY

<table>
<thead>
<tr>
<th>LLW #:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design #:</td>
<td>Project Name:</td>
</tr>
<tr>
<td>BCC #:</td>
<td>Project Address:</td>
</tr>
<tr>
<td>Design Manager:</td>
<td></td>
</tr>
<tr>
<td>BCC Reviewer:</td>
<td></td>
</tr>
<tr>
<td>Commissioning:</td>
<td></td>
</tr>
</tbody>
</table>

Commissioning Agent's Statement - Construction Phase:

As Commissioning Agent, I verify to the best of my knowledge and belief, that the NYC Green Schools Guide credit requirements for commissioning have been achieved as indicated below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

E1.1R - Fundamental Commissioning of the Building Energy Systems

- The CxA has reviewed the Owners Project Requirements (OPR) and Basis of Design (BOD)
- Commissioning requirements have been incorporated into the construction documents.
- A commissioning plan has been developed and utilized.
- The installation and performance of the following systems have been verified: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.
- A commissioning report has been completed.

E1.2R - Enhanced Commissioning

- There CxA has conducted at least one Commissioning Design Review of the Owner’s Project Requirements (OPR), Basis of Design and the design documents prior to mid-construction document phase and back-checked the CxA comments in the subsequent design submissions.
- The CxA has reviewed contractor submittals for compliance with the Owners Project Requirements and the Basis of Design for the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.
- A systems manual has been prepared for the project that provides operating staff the information needed to understand and optimally operate the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator. Items required for this manual that are not developed by the contractor have been provided and incorporated. These items include the final basis of design and the recommended schedules for maintenance, testing, and calibration.
- Appropriate DSF staff have been trained in the operation and maintenance of the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.
- The CxA has reviewed building operations within 10 months after substantial completion and a plan for resolution of outstanding issues has been completed for the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.

NYC Green Schools Rating System

A systems manual has been prepared for the project that provides operating staff the information needed to understand and optimally operate the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.

Items required for this manual that are not developed by the contractor have been provided and incorporated. These items include the final basis of design and the recommended schedules for maintenance, testing, and calibration.

Appropriate DSF staff have been trained in the operation and maintenance of the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.

The CxA has reviewed building operations within 10 months after substantial completion and a plan for resolution of outstanding issues has been completed for the following systems: HVAC, lighting controls, domestic hot water, fire alarm and emergency generator.
Contractor's Certification Form
CONSTRUCTION PHASE

Contractor: Firm Name: Date:
Address: Project Name:
Telephone: Project Address:
etail:

Contractor's Statement

I verify that the sustainable requirements summarized below have been achieved.

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Signature</th>
<th>Date</th>
</tr>
</thead>
</table>

Contractor's
Initials

Site

- **S 1.1R - Construction Activity Pollution Prevention**
 - An erosion and sedimentation control plan complying with NYS DEC SPDES General Permit for Construction Activity, including measures from NYS DEC Standards and Specifications for Erosion and Sediment Control in accordance with the specification Section 02200, was implemented.
 - OR
 - Project is completely interior and a dust control plan has been submitted in accordance with specification Section S01900 and such plan was implemented.

Materials

- **M 1.5R - Construction Waste Management 50%**
 - The project implements a waste management plan that diverts 50% of the construction waste away from landfills and incinerators. A Construction Waste Management Plan and calculation tables have been submitted as documentation in accordance with Specification Section S01524.

- **M 1.6 - Construction Waste Management 75%**
 - The project implements a waste management plan that diverts 75% of the construction waste away from landfills and incinerators. A Construction Waste Management Plan and calculation tables have been submitted as documentation in accordance with Specification Section S01524.

- **M 1.7 - Construction Waste Management 95%**
 - The project implements a waste management plan that diverts 95% of the construction waste away from landfills and incinerators. A Construction Waste Management Plan and calculation tables have been submitted as documentation in accordance with Specification Section S01524.
Indoor Environmental Quality

Q2.1R - Construction IAQ Management Plan, During Construction

☐ A copy of the Indoor Air Quality (IAQ) Management Plan for construction developed and implemented for this project has been submitted as documentation in accordance with Specification Section 01550.

☐ Permanently installed air handling equipment was not used during construction.

☐ Permanently installed air handling equipment was used during construction. The chart below has been completed for filtration media used during construction.

<table>
<thead>
<tr>
<th>Merv Rating</th>
<th>Filter Manufacturer</th>
<th>Filter Model #</th>
<th>Location of Installed Filter</th>
<th>Filter Replaced immediately prior to Occupancy (YES or NO)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ I have provided six photos showing IAQ practices which were used during the building construction from SMACNA IAQ Guideline for Occupied Buildings under Construction, 1995, Chapter 3. Each photo is labelled indicating which SMACNA IAQ practice is shown.

☐ For Phased Occupancy or Modernization Projects, a letter has been submitted stating that carpeting in occupied areas was HEPA vacuumed daily.

Q2.2R - Construction IAQ, Management Plan, Before Occupancy

A building flush-out was carried out per the specification requirements in Specification Section 01550.

☐ I have provided a narrative describing the project’s specific flush-out procedures including data regarding temperature, airflow, filters used during flush-out and duration of the flush out.

AND

☐ I have provided a construction schedule showing building flush-out as documentation.
<table>
<thead>
<tr>
<th>Requirement Level</th>
<th>Requested FEY</th>
<th>Design FY</th>
<th>Construction FY</th>
<th>Completion FY</th>
<th>City Capital Allocation FY</th>
<th>City Capital Cost ($)</th>
<th>Project Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEED Rating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Phase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Start of Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Start of Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Final Completion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEED Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rating Requirement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group per NYC Building Code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managing Agency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name of Project Phase in SEPTS Capital Project Record</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Name in SEPTS Capital Project Record</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>